cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 14 results. Next

A217494 Primes of the form 2*n^2 + 34*n + 15.

Original entry on oeis.org

631, 883, 1171, 2251, 2683, 8191, 9811, 12511, 20071, 25183, 30871, 33931, 38791, 40483, 57331, 61471, 70183, 81883, 94483, 105211, 125371, 150571, 157231, 167491, 188983, 292483, 315883, 340183, 360271, 423991, 440731, 469351, 481051, 510931
Offset: 1

Views

Author

Vincenzo Librandi, Oct 08 2012

Keywords

Comments

Conjecture: 2^a(n)-1 is not prime; in other words, these primes are included in A054723.
2*a(n)+259 is a square. - Vincenzo Librandi, Mar 04 2013

Crossrefs

Subsequence of A002145.

Programs

  • Magma
    [a: n in [1..500] | IsPrime(a) where a is 2*n^2+34*n+15];
  • Mathematica
    Select[Table[2 n^2 + 34 n + 15, {n, 500}], PrimeQ]

A217496 Primes of the form 2*n^2 + 50*n + 23.

Original entry on oeis.org

23, 131, 191, 911, 1223, 1451, 1571, 1823, 3323, 3671, 3851, 5651, 6323, 6791, 7523, 8291, 9371, 10223, 12671, 15731, 16091, 16823, 25931, 28751, 29723, 39191, 43223, 50591, 53831, 55823, 60611, 62723, 64151, 64871, 68531, 73823, 77723, 80111, 87491, 90023
Offset: 1

Views

Author

Vincenzo Librandi, Oct 09 2012

Keywords

Comments

Conjecture: 2^a(n)-1 is not prime; in other words, these primes are included in A054723.
2*a(n)+579 is a square. - Vincenzo Librandi, Mar 04 2013

Crossrefs

Subsequence of A002145.

Programs

  • Magma
    [a: n in [0..200] | IsPrime(a) where a is 2*n^2 + 50*n + 23];
  • Mathematica
    Select[Table[2 n^2 + 50 n + 23, {n, 0, 500}], PrimeQ]

A217497 Primes of the form 2*n^2 + 54*n + 25.

Original entry on oeis.org

421, 673, 2473, 4561, 5821, 9601, 12301, 14281, 19861, 30661, 32173, 33721, 61261, 67741, 84121, 94273, 107773, 110581, 122173, 134341, 170773, 203821, 207673, 223441, 227473, 265381, 274201, 287701, 344941, 365173, 391273, 396601, 418273, 423781, 469141
Offset: 1

Views

Author

Vincenzo Librandi, Oct 09 2012

Keywords

Comments

Conjecture: 2^a(n)-1 is not prime; in other words, these primes are included in A054723.
2*a(n) + 679 is a square. - Vincenzo Librandi, Apr 10 2015
Equivalently, primes of the form 36*n^2 + 36*n + 9. - Charles R Greathouse IV, Jul 24 2024

Crossrefs

Subsequence of A002144.

Programs

  • Magma
    [a: n in [1..500] | IsPrime(a) where a is 2*n^2+54*n+25];
    
  • Mathematica
    Select[Table[2 n^2 + 54 n + 25, {n, 500}], PrimeQ]
  • PARI
    list(lim)=my(v=List()); for(n=2,(sqrtint(lim\1*2+679)-27)\6, my(p=18*n^2 + 162*n + 25); if(isprime(p), listput(v,p))); Vec(v) \\ Charles R Greathouse IV, Jul 24 2024

Formula

a(n) >> n^2 log n. - Charles R Greathouse IV, Jul 24 2024

A217498 Primes of the form 2*n^2 + 58*n + 27.

Original entry on oeis.org

151, 367, 619, 907, 1231, 1987, 2887, 3391, 3931, 4507, 5119, 6451, 7927, 8719, 9547, 11311, 13219, 15271, 17467, 21031, 22291, 24919, 27691, 29131, 32119, 35251, 36871, 41947, 43711, 55051, 59119, 63331, 76831, 81619, 84067, 89071, 94219, 96847, 104947
Offset: 1

Views

Author

Vincenzo Librandi, Oct 09 2012

Keywords

Comments

Conjecture: 2^a(n)-1 is not prime; in other words, these primes are included in A054723.
2*a(n) + 787 is a square. - Vincenzo Librandi, Apr 10 2015

Crossrefs

Subsequence of A002145.

Programs

  • Magma
    [a: n in [1..500] | IsPrime(a) where a is 2*n^2+58*n+27];
  • Mathematica
    Select[Table[2 n^2 + 58 n + 27, {n, 500}], PrimeQ]

A217499 Primes of the form 2*n^2 + 70*n + 33.

Original entry on oeis.org

181, 433, 1801, 4933, 5581, 7741, 13033, 18433, 24733, 41761, 47161, 49033, 94033, 96661, 104761, 140401, 156781, 174061, 188533, 207433, 227233, 252181, 265141, 370081, 385741, 412561, 423541, 440281, 451621, 510481, 535033, 572941, 598933, 659521, 666433
Offset: 1

Views

Author

Vincenzo Librandi, Oct 09 2012

Keywords

Comments

Conjecture: 2^a(n)-1 is not prime; in other words, these primes are included in A054723.
2*a(n) + 1159 is a square. - Vincenzo Librandi, Apr 10 2015

Crossrefs

Subsequence of A002144.

Programs

  • Magma
    [a: n in [1..600] | IsPrime(a) where a is 2*n^2+70*n+33];
  • Mathematica
    Select[Table[2 n^2 + 70 n + 33, {n, 600}], PrimeQ]

A217495 Primes of the form 2*n^2 + 46*n + 21.

Original entry on oeis.org

769, 1381, 1741, 2137, 3037, 3541, 4657, 7321, 9697, 22441, 26437, 30757, 35401, 37021, 38677, 47497, 49369, 55201, 61357, 72337, 79357, 81769, 96997, 99661, 105097, 134437, 188869, 207769, 211657, 227569, 256801, 306301, 330241, 469237, 480937, 492781, 510817
Offset: 1

Views

Author

Vincenzo Librandi, Oct 09 2012

Keywords

Comments

Conjecture: 2^a(n)-1 is not prime; in other words, these primes are included in A054723.
2*a(n)+487 is a square. - Vincenzo Librandi, Mar 04 2013

Crossrefs

Cf. Primes of the form 2*n^2+2*(2*k+3)*n+(2*k+1): A176549 (k=0), A154577 (k=2), A154592 (k=3), A154601 (k=4), A217494 (k=7), this sequence (k=10), A217496 (k=11), A217497 (k=12), A217498 (k=13), A217499 (k=16), A217500 (k=17), A217501 (k=18), A217620 (k=19), A217621 (k=21).
Cf. A054723.
Subsequence of A002144.

Programs

  • Magma
    [a: n in [1..500] | IsPrime(a) where a is 2*n^2+46*n+21];
  • Mathematica
    Select[Table[2 n^2 + 46 n + 21, {n, 500}], PrimeQ]

A217500 Primes of the form 2*n^2 + 74*n + 35.

Original entry on oeis.org

191, 863, 1091, 1871, 2963, 3491, 3863, 4451, 9011, 15731, 21191, 21611, 29363, 30851, 35531, 42863, 44651, 45863, 47711, 50231, 52163, 60251, 65963, 68171, 71171, 75011, 100151, 101051, 109331, 112163, 119891, 144611, 147863, 164663, 179951, 204791, 254963
Offset: 1

Views

Author

Vincenzo Librandi, Oct 09 2012

Keywords

Comments

Conjecture: 2^a(n)-1 is not prime; in other words, these primes are included in A054723.
2*a(n) + 1299 is a square. - Vincenzo Librandi, Apr 09 2015

Crossrefs

Cf. Primes of the form 2*n^2+2*(2*k+3)*n+(2*k+1): A176549 (k=0), A154577 (k=2), A154592 (k=3), A154601 (k=4), A217494 (k=7), A217495 (k=10), A217496 (k=11), A217497 (k=12), A217498 (k=13), A217499 (k=16), this sequence (k=17), A217501 (k=18), A217620 (k=19), A217621 (k=21).
Cf. A054723.
Subsequence of A002145.

Programs

  • Magma
    [a: n in [1..600] | IsPrime(a) where a is 2*n^2 + 74*n + 35];
  • Mathematica
    Select[Table[2n^2 + 74n + 35, {n, 600}], PrimeQ]

A217501 Primes of the form 2*n^2 + 78*n + 37.

Original entry on oeis.org

37, 577, 1657, 2089, 2557, 3061, 4177, 4789, 5437, 6121, 6841, 8389, 12889, 17137, 18289, 19477, 21961, 27361, 36541, 38197, 41617, 45181, 47017, 48889, 54721, 56737, 58789, 74161, 78877, 83737, 88741, 91297, 93889, 96517, 99181, 113041, 121789, 124777
Offset: 1

Views

Author

Vincenzo Librandi, Oct 09 2012

Keywords

Comments

Conjecture: 2^a(n)-1 is not prime; in other words, these primes are included in A054723.
2*a(n) + 1447 is a square. - Vincenzo Librandi, Apr 09 2015

Crossrefs

Cf. Primes of the form 2*n^2+2*(2*k+3)*n+(2*k+1): A176549 (k=0), A154577 (k=2), A154592 (k=3), A154601 (k=4), A217494 (k=7), A217495 (k=10), A217496 (k=11), A217497 (k=12), A217498 (k=13), A217499 (k=16), A217500 (k=17), this sequence (k=18), A217620 (k=19), A217621 (k=21).
Cf. A054723.
Subsequence of A002144.

Programs

  • Magma
    [a: n in [0..600] | IsPrime(a) where a is 2*n^2+78*n+37];
  • Mathematica
    Select[Table[2 n^2 + 78 n + 37, {n, 0, 600}], PrimeQ]

A217620 Primes of the form 2*n^2 + 82*n + 39.

Original entry on oeis.org

211, 499, 823, 1579, 2011, 4099, 6043, 6763, 8311, 10903, 11839, 18211, 27283, 28723, 34843, 38119, 41539, 56659, 58711, 76423, 86143, 88663, 93811, 99103, 110119, 121711, 124699, 130783, 149899, 163363, 173839, 181003, 188311, 222979, 227011, 231079, 247711
Offset: 1

Views

Author

Vincenzo Librandi, Oct 09 2012

Keywords

Comments

Conjecture: 2^a(n)-1 is not prime; in other words, these primes are included in A054723.
2*a(n) + 1603 is a square. - Vincenzo Librandi, Apr 09 2015

Crossrefs

Cf. Primes of the form 2*n^2+2*(2*k+3)*n+(2*k+1): A176549 (k=0), A154577 (k=2), A154592 (k=3), A154601 (k=4), A217494 (k=7), A217495 (k=10), A217496 (k=11), A217497 (k=12), A217498 (k=13), A217499 (k=16), A217500 (k=17), A217501 (k=18), this sequence (k=19), A217621 (k=21).
Cf. A054723.
Subsequence of A002145.

Programs

  • Magma
    [a: n in [1..600] | IsPrime(a) where a is 2*n^2+82*n+39];
  • Mathematica
    Select[Table[2 n^2 + 82 n + 39, {n, 600}], PrimeQ]

A217621 Primes of the form 2*n^2 + 90*n + 43.

Original entry on oeis.org

43, 331, 2311, 3931, 7351, 8971, 18043, 19231, 23011, 31543, 33091, 37951, 46771, 50551, 58543, 60631, 81043, 133711, 149731, 173671, 188143, 226843, 251791, 296251, 310291, 319831, 364543, 385351, 395971, 412171, 417643, 439891, 474343, 540871, 625111, 631843
Offset: 1

Views

Author

Vincenzo Librandi, Oct 09 2012

Keywords

Comments

Conjecture: 2^a(n)-1 is not prime; in other words, these primes are included in A054723.
2*a(n) + 1939 is a square. - Vincenzo Librandi, Apr 09 2015

Crossrefs

Cf. Primes of the form 2*n^2+2*(2*k+3)*n+(2*k+1): A176549 (k=0), A154577 (k=2), A154592 (k=3), A154601 (k=4), A217494 (k=7), A217495 (k=10), A217496 (k=11), A217497 (k=12), A217498 (k=13), A217499 (k=16), A217500 (k=17), A217501 (k=18), A217620 (k=19), this sequence (k=21).
Subsequence of A002145.

Programs

  • Magma
    [a: n in [0..700] | IsPrime(a) where a is 2*n^2+90*n+43];
  • Mathematica
    Select[Table[2 n^2 + 90 n + 43, {n, 0, 700}], PrimeQ]
Showing 1-10 of 14 results. Next