A271625
a(n) = = 2*(n+1)^2 - 5.
Original entry on oeis.org
3, 13, 27, 45, 67, 93, 123, 157, 195, 237, 283, 333, 387, 445, 507, 573, 643, 717, 795, 877, 963, 1053, 1147, 1245, 1347, 1453, 1563, 1677, 1795, 1917, 2043, 2173, 2307, 2445, 2587, 2733, 2883, 3037, 3195, 3357, 3523, 3693, 3867, 4045, 4227, 4413, 4603, 4797, 4995, 5197, 5403, 5613, 5827
Offset: 1
Numbers h such that 2*h + k is a perfect square:
A294774 (k=-9),
A255843 (k=-8),
A271649 (k=-7),
A093328 (k=-6),
A097080 (k=-5),
A271624 (k=-4),
A051890 (k=-3),
A058331 (k=-2),
A001844 (k=-1),
A001105 (k=0),
A046092 (k=1),
A056222 (k=2),
A142463 (k=3),
A054000 (k=4),
A090288 (k=5),
A268581 (k=6),
A059993 (k=7), (-1)*
A147973 (k=8),
A139570 (k=9), this sequence (k=10),
A222182 (k=11),
A152811 (k=12),
A181510 (k=13),
A161532 (k=14), no sequence (k=15).
-
[ 2*n^2 + 4*n - 3: n in [1..60]];
-
[ n: n in [1..6000] | IsSquare(2*n+10)];
-
Table[2 n^2 + 4 n - 3, {n, 53}] (* Michael De Vlieger, Apr 11 2016 *)
LinearRecurrence[{3,-3,1},{3,13,27},60] (* Harvey P. Dale, Jun 08 2023 *)
2*Range[2,60]^2 -5 (* G. C. Greubel, Jan 21 2025 *)
-
x='x+O('x^99); Vec(x*(3+4*x-3*x^2)/(1-x)^3) \\ Altug Alkan, Apr 11 2016
-
def A271625(n): return 2*pow(n+1,2) - 5
print([A271625(n) for n in range(1,61)]) # G. C. Greubel, Jan 21 2025
A271624
a(n) = 2*n^2 - 4*n + 4.
Original entry on oeis.org
2, 4, 10, 20, 34, 52, 74, 100, 130, 164, 202, 244, 290, 340, 394, 452, 514, 580, 650, 724, 802, 884, 970, 1060, 1154, 1252, 1354, 1460, 1570, 1684, 1802, 1924, 2050, 2180, 2314, 2452, 2594, 2740, 2890, 3044, 3202, 3364, 3530, 3700, 3874, 4052, 4234, 4420, 4610, 4804, 5002, 5204, 5410, 5620
Offset: 1
a(1) = 2*1^2 - 4*1 + 4 = 2.
Cf.
A002522, numbers n such that 2*n + k is a perfect square: no sequence (k = -9),
A255843 (k = -8),
A271649 (k = -7),
A093328 (k = -6),
A097080 (k = -5), this sequence (k = -4),
A051890 (k = -3),
A058331 (k = -2),
A001844 (k = -1),
A001105 (k = 0),
A046092 (k = 1),
A056222 (k = 2),
A142463 (k = 3),
A054000 (k = 4),
A090288 (k = 5),
A268581 (k = 6),
A059993 (k = 7), (-1)*
A147973 (k = 8),
A139570 (k = 9),
A271625 (k = 10),
A222182 (k = 11),
A152811 (k = 12),
A181510 (k = 13),
A161532 (k = 14), no sequence (k = 15).
-
[ 2*n^2 - 4*n + 4: n in [1..60]];
-
[ n: n in [1..6000] | IsSquare(2*n-4)];
-
Table[2 n^2 - 4 n + 4, {n, 54}] (* Michael De Vlieger, Apr 11 2016 *)
LinearRecurrence[{3,-3,1},{2,4,10},60] (* Harvey P. Dale, Jul 18 2023 *)
-
x='x+O('x^99); Vec(2*x*(1-x+2*x^2)/(1-x)^3) \\ Altug Alkan, Apr 11 2016
-
a(n)=2*n^2-4*n+4 \\ Charles R Greathouse IV, Apr 11 2016
A245300
Triangle T(n,k) = (n+k)*(n+k+1)/2 + k, 0 <= k <= n, read by rows.
Original entry on oeis.org
0, 1, 4, 3, 7, 12, 6, 11, 17, 24, 10, 16, 23, 31, 40, 15, 22, 30, 39, 49, 60, 21, 29, 38, 48, 59, 71, 84, 28, 37, 47, 58, 70, 83, 97, 112, 36, 46, 57, 69, 82, 96, 111, 127, 144, 45, 56, 68, 81, 95, 110, 126, 143, 161, 180, 55, 67, 80, 94, 109, 125, 142, 160, 179, 199, 220
Offset: 0
First rows and their row sums (A245301):
0 0;
1, 4 5;
3, 7, 12 22;
6, 11, 17, 24 58;
10, 16, 23, 31, 40 120;
15, 22, 30, 39, 49, 60 215;
21, 29, 38, 48, 59, 71, 84 350;
28, 37, 47, 58, 70, 83, 97, 112 532;
36, 46, 57, 69, 82, 96, 111, 127, 144 768;
45, 56, 68, 81, 95, 110, 126, 143, 161, 180 1065;
55, 67, 80, 94, 109, 125, 142, 160, 179, 199, 220 1430;
66, 79, 93, 108, 124, 141, 159, 178, 198, 219, 241, 264 1870;
78, 92, 107, 123, 140, 158, 177, 197, 218, 240, 263, 287, 312 2392.
-
a245300 n k = (n + k) * (n + k + 1) `div` 2 + k
a245300_row n = map (a245300 n) [0..n]
a245300_tabl = map a245300_row [0..]
a245300_list = concat a245300_tabl
-
[k + Binomial(n+k+1,2): k in [0..n], n in [0..15]]; // G. C. Greubel, Apr 01 2021
-
Table[k + Binomial[n+k+1,2], {n,0,15}, {k,0,n}]//Flatten (* G. C. Greubel, Apr 01 2021 *)
-
flatten([[k + binomial(n+k+1,2) for k in (0..n)] for n in (0..15)]) # G. C. Greubel, Apr 01 2021
A271649
a(n) = 2*(n^2 - n + 2).
Original entry on oeis.org
4, 8, 16, 28, 44, 64, 88, 116, 148, 184, 224, 268, 316, 368, 424, 484, 548, 616, 688, 764, 844, 928, 1016, 1108, 1204, 1304, 1408, 1516, 1628, 1744, 1864, 1988, 2116, 2248, 2384, 2524, 2668, 2816, 2968, 3124, 3284, 3448, 3616, 3788, 3964, 4144, 4328, 4516, 4708, 4904, 5104, 5308, 5516
Offset: 1
a(1) = 2*(1^2 - 1 + 2) = 4.
Numbers h such that 2*h + k is a perfect square: no sequence (k=-9),
A255843 (k=-8), this sequence (k=-7),
A093328 (k=-6),
A097080 (k=-5),
A271624 (k=-4),
A051890 (k=-3),
A058331 (k=-2),
A001844 (k=-1),
A001105 (k=0),
A046092 (k=1),
A056222 (k=2),
A142463 (k=3),
A054000 (k=4),
A090288 (k=5),
A268581 (k=6),
A059993 (k=7), (-1)*
A147973 (k=8),
A139570 (k=9),
A271625 (k=10),
A222182 (k=11),
A152811 (k=12),
A181510 (k=13),
A161532 (k=14), no sequence (k=15).
-
[ 2*n^2 - 2*n + 4: n in [1..60]];
-
[ n: n in [1..6000] | IsSquare(2*n-7)];
-
A271649:=n->2*(n^2-n+2): seq(A271649(n), n=1..60); # Wesley Ivan Hurt, Aug 31 2016
-
Table[2 (n^2 - n + 2), {n, 53}] (* or *)
Select[Range@ 5516, IntegerQ@ Sqrt[2 # - 7] &] (* or *)
Table[SeriesCoefficient[(-4 (1 - x + x^2))/(-1 + x)^3, {x, 0, n}], {n, 0, 52}] (* Michael De Vlieger, Apr 11 2016 *)
LinearRecurrence[{3,-3,1},{4,8,16},60] (* Harvey P. Dale, Jun 14 2022 *)
-
a(n)=2*(n^2-n+2) \\ Charles R Greathouse IV, Jun 17 2017
A294774
a(n) = 2*n^2 + 2*n + 5.
Original entry on oeis.org
5, 9, 17, 29, 45, 65, 89, 117, 149, 185, 225, 269, 317, 369, 425, 485, 549, 617, 689, 765, 845, 929, 1017, 1109, 1205, 1305, 1409, 1517, 1629, 1745, 1865, 1989, 2117, 2249, 2385, 2525, 2669, 2817, 2969, 3125, 3285, 3449, 3617, 3789, 3965, 4145, 4329, 4517, 4709, 4905
Offset: 0
Second column of Mathar's array in
A016813 (Comments section).
Similar sequences (see the first comment):
A161532 (k=-14),
A181510 (k=-13),
A152811 (k=-12),
A222182 (k=-11),
A271625 (k=-10),
A139570 (k=-9), (-1)*
A147973 (k=-8),
A059993 (k=-7),
A268581 (k=-6),
A090288 (k=-5),
A054000 (k=-4),
A142463 or
A132209 (k=-3),
A056220 (k=-2),
A046092 (k=-1),
A001105 (k=0),
A001844 (k=1),
A058331 (k=2),
A051890 (k=3),
A271624 (k=4),
A097080 (k=5),
A093328 (k=6),
A271649 (k=7),
A255843 (k=8), this sequence (k=9).
-
seq(2*n^2 + 2*n + 5, n=0..100); # Robert Israel, Nov 10 2017
-
Table[2n^2+2n+5,{n,0,50}] (* or *) LinearRecurrence[{3,-3,1},{5,9,17},50] (* Harvey P. Dale, Sep 18 2023 *)
-
Vec((5 - 6*x + 5*x^2) / (1 - x)^3 + O(x^50)) \\ Colin Barker, Nov 13 2017
A330700
a(n) = (n - 1)*n*(2*n^2 + 4*n - 1)/6.
Original entry on oeis.org
0, 0, 5, 29, 94, 230, 475, 875, 1484, 2364, 3585, 5225, 7370, 10114, 13559, 17815, 23000, 29240, 36669, 45429, 55670, 67550, 81235, 96899, 114724, 134900, 157625, 183105, 211554, 243194, 278255, 316975, 359600, 406384, 457589, 513485, 574350, 640470, 712139, 789659
Offset: 0
-
I:=[0, 0, 5, 29, 94]; [n le 5 select I[n] else 5*Self(n-1)-10*Self(n-2)+10*Self(n-3)-5*Self(n-4)+Self(n-5): n in [1..40]];
-
Table[(n-1)n(2n^2+4n-1)/6,{n,0,39}]
-
my(x='x + O('x^39)); concat([0, 0], Vec(serlaplace((1/6)*exp(x)*x^2*(15+14*x+2*x^2))))
-
(x^2*(5+4*x-x^2)/(1-x)^5).series(x, 40).coefficients(x, sparse=False)
Showing 1-6 of 6 results.
Comments