cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

User: Tyler Skywalker

Tyler Skywalker's wiki page.

Tyler Skywalker has authored 5 sequences.

A276765 Number of digits in n equals number of syllables in English name of n.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 8, 9, 13, 14, 15, 16, 18, 19, 20, 30, 40, 50, 60, 80, 90, 100, 200, 300, 400, 500, 600, 800, 900, 7000, 70000, 700000, 800001, 800002, 800003, 800004, 800005, 800006, 800008, 800009, 800010, 800012, 801000, 802000, 803000, 804000, 805000
Offset: 1

Author

Tyler Skywalker, Sep 17 2016

Keywords

Comments

Numbers n such that A055642(n) = A075774(n). - Felix Fröhlich, Sep 30 2016

Examples

			From _Felix Fröhlich_, Sep 30 2016: (Start)
13 is a term, since the decimal expansion is two digits long and "thir-teen" has two syllables.
17 is not a term, since the decimal expansion is two digits long, but "se-ven-teen" has three syllables.
800001 is a term, since the decimal expansion is six digits long and "eight -hun-dred-thou-sand-one" has six syllables. (End)
		

Crossrefs

Extensions

Edited and more terms from Felix Fröhlich, Sep 30 2016

A275465 a(n) = f^(n/f), where f is the smallest prime factor of n.

Original entry on oeis.org

2, 3, 4, 5, 8, 7, 16, 27, 32, 11, 64, 13, 128, 243, 256, 17, 512, 19, 1024, 2187, 2048, 23, 4096, 3125, 8192, 19683, 16384, 29, 32768, 31, 65536, 177147, 131072, 78125, 262144, 37, 524288, 1594323, 1048576, 41, 2097152, 43, 4194304, 14348907, 8388608, 47, 16777216
Offset: 2

Author

Tyler Skywalker, Jul 28 2016

Keywords

Examples

			For n = 12 = 2^2*3, the smallest prime factor of n is f = 2, so a(12) = f^(n/f) = 2^(12/2) = 2^6 = 64. - _Michael B. Porter_, Jul 31 2016
		

Crossrefs

Programs

  • Maple
    a:= n-> (f-> f^(n/f))(min(numtheory[factorset](n))):
    seq(a(n), n=2..50);  # Alois P. Heinz, Dec 11 2017
  • Mathematica
    a[n_] := With[{f = FactorInteger[n][[1, 1]]}, f^(n/f)]; ; Array[a,50,2] (* JungHwan Min, Jul 29 2016 *)(* amended by Harvey P. Dale, Aug 12 2021 *)
  • PARI
    a(n) = my(f=factor(n)[1, 1]); f^(n/f) \\ Felix Fröhlich, Jul 30 2016
  • Python
    from _future_ import division
    from sympy import primefactors
    def A275465(n):
        p = min(primefactors(n))
        return p**(n//p) # Chai Wah Wu, Jul 29 2016
    

Formula

a(p) = p, a(p^2) = p^p and a(p^m) = p^(p^(m-1)) for prime p. - Chai Wah Wu, Jul 29 2016
a(n) = A020639(n)^(n/A020639(n)). - Felix Fröhlich, Jul 30 2016
a(n) = A020639(n)^A032742(n). - Chai Wah Wu, Jul 30 2016

Extensions

More terms from Chai Wah Wu, Jul 30 2016

A275203 Hyperoperations using consecutive integers.

Original entry on oeis.org

1, 2, 4, 64
Offset: 0

Author

Tyler Skywalker, Jul 19 2016

Keywords

Comments

a(4) is too large to display. The number of decimal digits in (the number of decimal digits in a(4)) is approximately 64^64*log[10](64), that is, about 7.1*10^115. - Robert Israel, Jul 19 2016

Examples

			a(0) = H_0(null,0) = 0+1 = 1.
a(1) = H_1(1,1) = 1+1 = 2.
a(2) = H_2(2,2) = 2*2 = 4.
a(3) = H_3(4,3) = 4^3 = 64.
a(4) = H_4(64,4) = 64^(64^(64^64)).
		

Crossrefs

Formula

a(n) = H_n(a(n-1),n), where H_n is the n-th hyperoperation.

A275211 Numbers of the form p^^k, where p is prime, k > 1, and ^^ is the tetration operator: x^^y = x^x^...^x with y copies of x.

Original entry on oeis.org

4, 16, 27, 3125, 65536, 823543, 285311670611, 7625597484987, 302875106592253, 827240261886336764177, 1978419655660313589123979, 20880467999847912034355032910567
Offset: 1

Author

Tyler Skywalker, Jul 19 2016

Keywords

Examples

			a(1) = 2^^2 = 2^2 = 4.
a(2) = 2^^3 = 2^2^2 = 16.
a(3) = 3^^2 = 3^3 = 27.
a(4) = 5^^2 = 5^5 = 3125.
		

Crossrefs

Cf. A000040.

Programs

Formula

For any prime number, p, p tetrated x times, where x is any integer greater than 1, is a prime tetration.

Extensions

a(5) inserted, a(10)-a(12) corrected by Charles R Greathouse IV, Jul 19 2016

A275120 List the least common multiples of {1, 2, ..., k} for k = 0, 1, ...; this sequence gives the length of the n-th block of consecutive equal numbers.

Original entry on oeis.org

2, 1, 1, 1, 2, 1, 1, 2, 2, 3, 1, 2, 4, 2, 2, 2, 2, 1, 5, 4, 2, 4, 2, 4, 6, 2, 3, 3, 4, 2, 6, 2, 2, 6, 8, 4, 2, 4, 2, 4, 8, 4, 2, 1, 3, 6, 2, 10, 2, 6, 6, 4, 2, 4, 6, 2, 10, 2, 4, 2, 12, 12, 4, 2, 4, 6, 2, 2, 8, 5, 1, 6, 6, 2, 6, 4, 2, 6, 4, 14, 4, 2, 4, 14, 6, 6, 4, 2, 4, 6, 2, 6, 6, 6, 4, 6
Offset: 1

Author

Tyler Skywalker, Jul 18 2016

Keywords

Comments

a(n) is the count of how many consecutive terms in A003418 are equal.

Examples

			lcm({}) = lcm({1}) = 1, so a(1) = 2.
lcm({1, 2}) = 2, so a(2) = 1.
lcm({1, 2, 3}) = 6, so a(3) = 1.
lcm({1, 2, 3, 4}) = 12, so a(4) = 1.
lcm({1, ..., 5}) = lcm({1, ..., 6}) = 60, so a(5) = 2.
lcm({1, ..., 7}) = 420, so a(6) = 1.
lcm({1, ..., 8}) = 840, so a(7) = 1.
lcm({1, ..., 9}) = lcm({1, ..., 10}) = 2520, so a(8) = 2.
lcm({1, ..., 11}) = lcm({1, ..., 12}) = 27720, so a(9) = 2.
		

Crossrefs

Frequency of given numbers using A003418.
Apart from the first term, same as A057820.

Programs

  • Mathematica
    {2}~Join~Rest@ Most@ Map[Length, Split@ Table[LCM @@ Range@ n, {n, 396}]] (* Michael De Vlieger, Jul 18 2016 *)
  • PARI
    do(lim)=my(v=List()); for(e=2,logint(lim\=1,2), forprime(p=2,sqrtnint(lim,e), listput(v,p^e))); v=Set(concat(Vec(v), primes([2,lim]))); concat(2, vector(#v-1,i,v[i+1]-v[i])) \\ Charles R Greathouse IV, Jul 18 2016

Formula

a(n) = A057820(n), n>1.