cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A158196 Expansion of (1-x^2*c(x)^4)/(1-3*x*c(x)^2), c(x) the g.f. of A000108.

Original entry on oeis.org

1, 3, 14, 71, 370, 1950, 10332, 54895, 292106, 1555706, 8289732, 44186710, 235575028, 1256093084, 6698073528, 35719158591, 190488112122, 1015885525794, 5417869631028, 28894620083346, 154102115782812
Offset: 0

Views

Author

Paul Barry, Mar 13 2009

Keywords

Comments

Apply the inverse of the Riordan array (1/(1-x^2),x/(1+x)^2) to 3^n. Hankel transform is A001653.

Crossrefs

Cf. A090317.

Formula

Conjecture: +3*(n+1)*a(n) +2*(-26*n+7)*a(n-1) +16*(18*n-25)*a(n-2) +256*(-2*n+5)*a(n-3)=0. - R. J. Mathar, Feb 05 2015
Conjecture: 3*(2*n+3)*(n+1)*a(n) +2*(-28*n^2-52*n+21)*a(n-1) +32*(2*n+5)*(2*n-3)*a(n-2)=0. - R. J. Mathar, Feb 05 2015

A158197 Expansion of (1-x^2*c(x)^4)/(1-4*x*c(x)^2), c(x) the g.f. of A000108.

Original entry on oeis.org

1, 4, 23, 140, 866, 5388, 33603, 209796, 1310510, 8188328, 51169094, 319779544, 1998527188, 12490460620, 78064190235, 487896926580, 3049340393430, 19058321475960, 119114304522450, 744463650984360, 4652895041524380
Offset: 0

Views

Author

Paul Barry, Mar 13 2009

Keywords

Comments

Apply the inverse of the Riordan array (1/(1-x^2),x/(1+x)^2) to 4^n. Hankel transform is A070997.

Crossrefs

Formula

Conjecture: +4*(n+1)*a(n) +(-81*n+23)*a(n-1) +10*(51*n-70)*a(n-2) +500*(-2*n+5)*a(n-3)=0. - R. J. Mathar, Feb 05 2015
Conjecture: +4*(n+1)^2*a(n) +(-41*n^2-58*n+23)*a(n-1) +50*(n+2)*(2*n-3)*a(n-2)=0. - R. J. Mathar, Feb 05 2015

A293944 Triangle read by rows related to Catalan triangle A009766.

Original entry on oeis.org

1, 1, 1, 2, 3, 2, 5, 9, 9, 5, 14, 28, 34, 28, 14, 42, 90, 123, 123, 90, 42, 132, 297, 440, 497, 440, 297, 132, 429, 1001, 1573, 1935, 1935, 1573, 1001, 429, 1430, 3432, 5642, 7397, 8068, 7397, 5642, 3432, 1430, 4862, 11934, 20332, 28014, 32636, 32636, 28014, 20332, 11934
Offset: 0

Views

Author

N. J. A. Sloane, Oct 21 2017

Keywords

Examples

			Triangle begins:
1,
1,1,
2,3,2,
5,9,9,5,
14,28,34,28,14,
42,90,123,123,90,42,
132,297,440,497,440,297,132,
...
		

Crossrefs

Cf. A009766, A000108 (1st column), A000245 (2nd column), A120989 (3rd), A090317 (row sums).

Programs

  • Maple
    A000108 := proc(q)
        if q <0 then
            0;
        else
            binomial(2*q,q)/(1+q) ;
        end if;
    end proc:
    R := proc(q,s)
        option remember;
        local a,j,l ;
        if q= 0 then
            A000108(s) ;
        elif s = 0 then
            A000108(q) ;
        else
            a := 0 ;
            for j from 0 to q do
                for l from 0 to s do
                    if j+l-1 >= 0 then
                        a := a+A000108(j+l-1) *procname(q-j,s-l) ;
                    end if;
                end do:
            end do:
        end if;
    end proc:
    A293944 := proc(n,k)
        R(n-k,k) ;
    end proc:
    seq(seq(A293944(n,k),k=0..n),n=0..12) ; # R. J. Mathar, Nov 02 2017
  • Mathematica
    R[q_, s_] := R[q, s] = Module[{a, j, l}, If[q == 0, CatalanNumber[s], If[s == 0, CatalanNumber[q], a = 0; For[j = 0, j <= q, j++, For[l = 0, l <= s , l++, If[j + l - 1 >= 0, a = a + CatalanNumber[j + l - 1] R[q - j, s - l]] ]]]] /. Null -> a];
    T [n_, k_] := R[n - k, k];
    Table[T[n, k], {n, 0, 12}, {k, 0, n}] // Flatten (* Jean-François Alcover, Apr 07 2020, after R. J. Mathar *)

Extensions

More terms from R. J. Mathar, Nov 02 2017
Showing 1-3 of 3 results.