cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A090327 Number of rules of a context-free grammar in Chomsky normal form that generates all permutations of n symbols.

Original entry on oeis.org

1, 4, 11, 30, 83, 234, 671, 1950, 5723, 16914, 50231, 149670, 446963, 1336794, 4002191, 11990190, 35937803, 107747874, 323112551, 969075510, 2906702243, 8719058154, 26155077311, 78461037630, 235374724283, 706107395634, 2118288632471, 6354798788550
Offset: 1

Views

Author

Peter R. J. Asveld, Jan 27 2004

Keywords

Examples

			S -> AD | DA | BE | EB, D -> BC | CB, E -> AC | CA, A -> a, B -> b, C-> c; so a(3)=11.
		

Programs

  • Maple
    f:= gfun:-rectoproc({a(n) = 6*a(n-1)-11*a(n-2)+6*a(n-3),a(1)=1,a(2)=4,a(3)=11,a(4)=30},a(n),'remember'):
    seq(f(n),n=1..100); # Robert Israel, Jan 15 2015
  • Mathematica
    f[n_] := Ceiling[5/2*3^(n - 2) + 2^(n - 1) - 1/2]; Table[ f[n], {n, 2, 27}] (* Robert G. Wilson v, Jan 30 2004 *)
  • PARI
    Vec(-x*(2*x^3-2*x^2-2*x+1)/((x-1)*(2*x-1)*(3*x-1)) + O(x^100)) \\ Colin Barker, Jan 15 2015

Formula

a(n) = ceiling[ (5*3^(n-2))/2 + 2^(n-1) - 1/2 ] for n > 1.
G.f.: -x*(2*x^3-2*x^2-2*x+1) / ((x-1)*(2*x-1)*(3*x-1)). - Colin Barker, Jan 15 2015
a(n) = 6*a(n-1)-11*a(n-2)+6*a(n-3) for n >= 5. - Robert Israel, Jan 15 2015

Extensions

More terms from Robert G. Wilson v, Jan 30 2004