cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A090391 a(n) = n*(n^4 + 30*n^3 + 395*n^2 + 2910*n + 11064)/120.

Original entry on oeis.org

0, 120, 312, 606, 1040, 1661, 2526, 3703, 5272, 7326, 9972, 13332, 17544, 22763, 29162, 36933, 46288, 57460, 70704, 86298, 104544, 125769, 150326, 178595, 210984, 247930, 289900, 337392, 390936, 451095, 518466, 593681, 677408
Offset: 0

Views

Author

Philippe Deléham, Jan 31 2004

Keywords

Crossrefs

Cf. A084938 (sixth diagonal), A090238.

Programs

  • Mathematica
    Table[n (n^4 + 30 n^3 + 395 n^2 + 2910 n + 11064)/120, {n, 0, 40}] (* Bruno Berselli, Feb 12 2015 *)
  • PARI
    concat(0, Vec(x*(71*x^4-316*x^3+534*x^2-408*x+120)/(x-1)^6 + O(x^100))) \\ Colin Barker, Feb 12 2015
    
  • PARI
    vector(40, n, n--; n*(n^4+30*n^3+395*n^2+2910*n+11064)/120) \\ Bruno Berselli, Feb 12 2015

Formula

a(n) = A084938(n+5, n) = Sum_{k=0..5} A090238(5, k)*binomial(n, k).
a(n) = 6*a(n-1)-15*a(n-2)+20*a(n-3)-15*a(n-4)+6*a(n-5)-a(n-6) for n>5. - Colin Barker, Feb 12 2015
G.f.: x*(71*x^4-316*x^3+534*x^2-408*x+120) / (x-1)^6. - Colin Barker, Feb 12 2015

Extensions

Name rewritten by Bruno Berselli, Feb 12 2015