cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A090392 Seventh diagonal (m=6) of triangle A084938; a(n) = A084938(n+6,n) = (n^6 + 45*n^5 + 925*n^4 + 11475*n^3 + 92314*n^2 + 413640*n)/720.

Original entry on oeis.org

0, 720, 1812, 3428, 5768, 9090, 13721, 20069, 28636, 40032, 54990, 74382, 99236, 130754, 170331, 219575, 280328, 354688, 445032, 554040, 684720, 840434, 1024925, 1242345, 1497284, 1794800, 2140450, 2540322, 3001068, 3529938, 4134815
Offset: 0

Views

Author

Philippe Deléham, Jan 31 2004

Keywords

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{7,-21,35,-35,21,-7,1},{0,720,1812,3428,5768,9090,13721},40] (* Harvey P. Dale, Jul 20 2016 *)
  • Python
    A090392_list, m = [], [1, 5, 18, 58, 177, 461, 0]
    for _ in range(1001):
        A090392_list.append(m[-1])
        print(m[-1])
        for i in range(6):
            m[i+1] += m[i] # Chai Wah Wu, Jun 04 2016

Formula

a(n) = A084938(n+6, n) = Sum_{k=0..6} A090238(6, k)*binomial(n, k).
From Chai Wah Wu, Jun 04 2016: (Start)
a(n) = 7*a(n-1) - 21*a(n-2) + 35*a(n-3) - 35*a(n-4) + 21*a(n-5) - 7*a(n-6) + a(n-7) for n > 6.
G.f.: x*(461*x^5 - 2482*x^4 + 5376*x^3 - 5864*x^2 + 3228*x - 720)/(x - 1)^7. (End)