cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A090393 Eighth diagonal (m=7) of triangle A084938; a(n) = A084938(n+7,n) = (n^7 + 63*n^6 + 1855*n^5 + 34125*n^4 + 438424*n^3 + 3980172*n^2 + 20946960*n)/5040.

Original entry on oeis.org

0, 5040, 12288, 22572, 36992, 56990, 84432, 121703, 171816, 238536, 326520, 441474, 590328, 781430, 1024760, 1332165, 1717616, 2197488, 2790864, 3519864, 4410000, 5490558, 6795008, 8361443, 10233048, 12458600, 15093000, 18197838
Offset: 0

Views

Author

Philippe Deléham, Jan 31 2004

Keywords

Crossrefs

Programs

  • Python
    A090393_list, m = [], [1, 6, 25, 92, 327, 1142, 3447, 0]
    for _ in range(1001):
        A090393_list.append(m[-1])
        print(m[-1])
        for i in range(7):
            m[i+1] += m[i] # Chai Wah Wu, Jun 04 2016

Formula

a(n) = A084938(n+7, n) = Sum_{k=0..7} A090238(7, k)*binomial(n, k).
From Chai Wah Wu, Jun 04 2016: (Start)
a(n) = 8*a(n-1) - 28*a(n-2) + 56*a(n-3) - 70*a(n-4) + 56*a(n-5) - 28*a(n-6) + 8*a(n-7) - a(n-8) for n > 7.
G.f.: x*(3447*x^6 - 21824*x^5 + 57742*x^4 - 81760*x^3 + 65388*x^2 - 28032*x + 5040)/(x - 1)^8. (End)