cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A090440 Generalized Stirling2 array (4,3).

Original entry on oeis.org

1, 24, 36, 12, 1, 1440, 5760, 6120, 2520, 456, 36, 1, 172800, 1339200, 2808000, 2420640, 1025280, 232920, 29400, 2040, 72, 1, 36288000, 471744000, 1643846400, 2381702400, 1745755200, 721224000, 178941600, 27624960, 2689920, 163800, 6000
Offset: 1

Views

Author

Wolfdieter Lang, Dec 23 2003

Keywords

Comments

The row lengths for this array are [1,4,7,10,13,16,...] = A016777(n-1), n>=1.

References

  • P. Blasiak, K. A. Penson and A. I. Solomon, The general boson normal ordering problem, Phys. Lett. A 309 (2003) 198-205.
  • M. Schork, On the combinatorics of normal ordering bosonic operators and deforming it, J. Phys. A 36 (2003) 4651-4665.

Crossrefs

Cf. A090438 (4, 2)-Stirling2.
Cf. A070531 (row sums), A091028 (alternating row sums).

Programs

Formula

Recursion: a(n, k)=sum(binomial(3, p)*fallfac(n-1-p+k, 3-p)*a(n-1, k-p), p=0..3), n>=2, 3<=k<=3*n, a(1, 3)=1, else 0. Rewritten from eq.(19) of the Schork reference with r=4, s=3. fallfac(n, m) := A008279(n, m) (falling factorials triangle).
a(n, k)=(((-1)^k)/k!)*sum(((-1)^p)*binomial(k, p)*product(fallfac(p+j-1, 3), j=1..n), p=3..k), n>=1, 3<=k<=3*n, else 0. From eq. (12) of the Blasiak et al. reference with r=4, s=3.