A090441 Symmetric triangle of certain normalized products of decreasing factorials.
1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 6, 12, 6, 1, 1, 24, 144, 144, 24, 1, 1, 120, 2880, 8640, 2880, 120, 1, 1, 720, 86400, 1036800, 1036800, 86400, 720, 1, 1, 5040, 3628800, 217728000, 870912000, 217728000, 3628800, 5040, 1, 1, 40320, 203212800, 73156608000
Offset: 0
Examples
Rows for n = 0, 1, 2, 3, ...: 1; 1, 1; 1, 1, 1; 1, 2, 2, 1; 1, 6, 12, 6, 1; ...
Links
- Donald Knuth, Two Notes on Notation, arXiv:math/9205211 [math.HO], 1992. (Page 16-17 explain and give examples; the case with Narayana numbers come from tying together the poset P_k's 'shoelaces' with inequalities, into a 2 X k rectangle.)
- Wolfdieter Lang, First 9 rows
- Richard P. Stanley, Ordered Structures and Partitions, 1971.
Crossrefs
Programs
-
PARI
spf(n) = prod(k=2, n, k!); T(n,m) = spf(n-1)/spf(m-1)/spf(n-m-1); row(n) = vector(n+1, k, T(n, k-1)); \\ Michel Marcus, Apr 13 2025
Formula
a(n, m) = 0 if n < m;
a(n, m) = 1 if m = 0 or m = n;
a(n, m) = (Product_{p=1..m} (n-p)!)/superfac(m-1) if n >= 0, 1 <= m <= n+1, where superfac(n) := A000178(n), n >= 0, (superfactorials).
a(n, m) = superfac(n-1)/superfac(m-1)/superfac(n-m-1)
With offset 1, equals ConvOffsStoT transform of the factorials, A000142: (1, 1, 2, 6, 24, ...); e.g., ConvOffs transform of (1, 1, 2, 6) = (1, 6, 12, 6, 1). - Gary W. Adamson, Apr 21 2008
Extensions
OFFSET changed from -1 to 0 by Natalia L. Skirrow, Apr 13 2025
Comments