cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A090601 Number of n-element groupoids with an identity.

Original entry on oeis.org

1, 2, 45, 43968, 6358196250, 236919104155855296, 3682959509036574988532481464, 35398008251644050232134479709365068115968, 292415292106611727928759157427747328169866020125762652311
Offset: 1

Views

Author

Christian G. Bower, Dec 05 2003

Keywords

Comments

Also partial groupoids with n-1 elements or groupoids with an absorbant (zero) element with n elements.

Programs

Formula

a(n+1) = sum {1*s_1+2*s_2+...=n} (fixA[s_1, s_2, ...]/(1^s_1*s_1!*2^s_2*s2!*...)) where fixA[s_1, s_2, ...] = prod {i, j>=1} ( (1 + sum {d|lcm(i, j)} (d*s_d))^(gcd(i, j)*s_i*s_j))
a(n) asymptotic to n^((n-1)^2+1)/n! = A090602(n)/A000142(n) = A090603(n)/A000142(n-1)

A175882 Number of groupoids of order n with no identity element.

Original entry on oeis.org

1, 0, 12, 19440, 4293918720, 298022460937500000, 10314424627908807366593740800, 256923577502496762167593902921782457650400, 6277101735385253516143083463326608130132905949327651766272, 196627050475552807506414708879663572595247698231546775823411085055396409324160
Offset: 0

Views

Author

Matt Westwood, Dec 05 2010

Keywords

Crossrefs

Programs

  • PARI
    a(n) = n^(n^2) - n^(((n-1)^2)+1) \\ Andrew Howroyd, Jan 23 2022

Formula

a(n) = n^(n^2) - n^(((n-1)^2)+1) = A002489(n) - A090602(n).

Extensions

a(0)=1 prepended and terms a(7) and beyond from Andrew Howroyd, Jan 23 2022
Showing 1-2 of 2 results.