A090601 Number of n-element groupoids with an identity.
1, 2, 45, 43968, 6358196250, 236919104155855296, 3682959509036574988532481464, 35398008251644050232134479709365068115968, 292415292106611727928759157427747328169866020125762652311
Offset: 1
Keywords
Links
- Eric Postpischil Posting to sci.math newsgroup, May 21 1990
- Eric Weisstein's World of Mathematics, Groupoid.
- Index entries for sequences related to groupoids
Programs
-
Sage
R. = InfinitePolynomialRing(QQ) @cached_function def Z(n): if n==0: return R.one() return sum(a[k]*Z(n-k) for k in (1..n))/n def magmas_identity(n): P = Z(n-1) q = 0 c = P.coefficients() count = 0 for m in P.monomials(): r = 1 T = m.variables() S = list(T) for u in T: i = R.varname_key(str(u))[1] j = m.degree(u) D = 1 for d in divisors(i): D += d*m.degrees()[-d-1] r *= D^(i*j^2) S.remove(u) for v in S: k = R.varname_key(str(v))[1] l = m.degree(v) D = 1 for d in divisors(lcm(i,k)): try: D += d*m.degrees()[-d-1] except: break r *= D^(gcd(i,k)*j*l*2) q += c[count]*r count += 1 return q # Philip Turecek, Oct 10 2023
Comments