cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A090622 Square array read by antidiagonals of highest power of k dividing n! (with n,k>1).

Original entry on oeis.org

1, 0, 1, 0, 1, 3, 0, 0, 1, 3, 0, 0, 1, 1, 4, 0, 1, 0, 1, 2, 4, 0, 0, 1, 1, 2, 2, 7, 0, 0, 0, 1, 1, 2, 2, 7, 0, 0, 1, 0, 2, 1, 3, 4, 8, 0, 0, 0, 1, 0, 2, 1, 3, 4, 8, 0, 0, 0, 0, 1, 1, 2, 1, 4, 4, 10, 0, 0, 0, 1, 1, 1, 1, 4, 2, 4, 5, 10, 0, 0, 1, 0, 1, 1, 2, 1, 4, 2, 5, 5, 11, 0, 0, 0, 1, 0, 1, 1, 2, 1, 4, 2, 5, 5, 11
Offset: 2

Views

Author

Henry Bottomley, Dec 06 2003

Keywords

Examples

			Square array starts:
1, 0, 0, 0, 0, 0, 0, ...
1, 1, 0, 0, 1, 0, 0, ...
3, 1, 1, 0, 1, 0, 1, ...
3, 1, 1, 1, 1, 0, 1, ...
4, 2, 2, 1, 2, 0, 1, ...
4, 2, 2, 1, 2, 1, 1, ...
7, 2, 3, 1, 2, 1, 2, ...
		

Crossrefs

Programs

  • Maple
    f:= proc(n, p) local c, k; c, k:= 0, p;
           while n>=k do c:= c+iquo(n, k); k:= k*p od; c
        end:
    T:= (n, k)-> min(seq(iquo(f(n, i[1]), i[2]), i=ifactors(k)[2])):
    seq(seq(T(n, 2+d-n), n=2..d), d=2..20);  # Alois P. Heinz, Oct 04 2012
  • Mathematica
    f[n_, p_] := Module[{c = 0, k = p}, While[n >= k , c = c + Quotient[n, k]; k = k*p ]; c ]; t[n_, k_] := Min[ Table[ Quotient[f[n, i[[1]]], i[[2]]], {i, FactorInteger[k]}]]; Table[ Table[t[n, 2 + d - n], {n, 2, d}], {d, 2, 20}] // Flatten (* Jean-François Alcover, Oct 03 2013, translated from Alois P. Heinz's Maple program *)

Formula

For k=p prime: T(n,p) = [n/p] + [n/p^2] + [n/p^3] + .... For k = p^m a prime power: T(n,p^m) = [T(n,p)/m]. For k = b*c with b and c coprime: T(n,a*b) = min(T(n,a), T(n,b)). T(n,k) is close to, but below, n/A090624(k).