A090623 Triangle of T(n,k) = [n/k] + [n/k^2] + [n/k^3] + [n/k^4] + ... for n, k > 1.
1, 1, 1, 3, 1, 1, 3, 1, 1, 1, 4, 2, 1, 1, 1, 4, 2, 1, 1, 1, 1, 7, 2, 2, 1, 1, 1, 1, 7, 4, 2, 1, 1, 1, 1, 1, 8, 4, 2, 2, 1, 1, 1, 1, 1, 8, 4, 2, 2, 1, 1, 1, 1, 1, 1, 10, 5, 3, 2, 2, 1, 1, 1, 1, 1, 1, 10, 5, 3, 2, 2, 1, 1, 1, 1, 1, 1, 1, 11, 5, 3, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 11, 6, 3, 3, 2, 2, 1, 1, 1
Offset: 2
Examples
Rows start: 1; 1,1; 3,1,1; 3,1,1,1; 4,2,1,1,1; 4,2,1,1,1,1; 7,2,2,1,1,1,1; 7,4,2,1,1,1,1,1; 8,4,2,2,1,1,1,1,1; ...
Links
- Zhuorui He, Table of n, a(n) for n = 2..11326
- Wenguang Zhai, On the prime power factorization of n!, Journal of Number Theory, Volume 129, Issue 8, August 2009, Pages 1820-1836.
Crossrefs
Programs
-
PARI
T(n,k) = {my(s = 0, j = 1); while(p=n\k^j, s += p; j++); s;} \\ Michel Marcus, Feb 02 2016
-
PARI
T(n,k) = (n - sumdigits(n,k))/(k-1) \\ Zhuorui He, Aug 25 2025
Formula
For p prime, T(n, p) = A090622(n, p) is the number of times that p is a factor of n!.
T(n,k) = (n - A240236(n, k))/(k - 1). - Zhuorui He, Aug 25 2025
Extensions
a(41) onward corrected by Zhuorui He, Aug 25 2025