A090631 Given n boxes labeled 1..n, such that box i weighs 2i grams and can support a total weight of i grams; a(n) = number of stacks of boxes that can be formed such that no box is squashed.
1, 2, 4, 6, 9, 12, 17, 22, 29, 36, 45, 54, 66, 78, 93, 108, 126, 144, 167, 190, 218, 246, 279, 312, 352, 392, 439, 486, 540, 594, 657, 720, 792, 864, 945, 1026, 1119, 1212, 1317, 1422, 1539, 1656, 1788, 1920, 2067, 2214, 2376, 2538, 2718, 2898, 3096, 3294
Offset: 0
Keywords
Examples
The a(4) = 9 possible stacks are: empty, 1, 2, 3, 4, 12, 13, 14, 24.
Links
- Oystein J. Rodseth, Sloane's box stacking problem, Discrete Math. 306 (2006), no. 16, 2005-2009.
- N. J. A. Sloane and J. A. Sellers, On non-squashing partitions, Discrete Math., 294 (2005), 259-274.
Programs
-
Maple
p:=1/(1-q)^2/product((1-q^(2*3^i)), i=0..5): s:=series(p,q,100): for n from 0 to 99 do printf(`%d,`, coeff(s,q,n)) od: # James Sellers, Dec 23 2005
Formula
G.f.: 1/(1-q)^2/Product_{i>=0} (1 - q^(2*3^i)). - James Sellers, Dec 23 2005
Extensions
More terms from James Sellers, Dec 23 2005