cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A090633 Start with the sequence [1, 1/2, 1/3, ..., 1/n]; form new sequence of n-1 terms by taking averages of successive terms; repeat until reach a single number F(n); a(n) = numerator of F(n).

Original entry on oeis.org

1, 3, 7, 15, 31, 21, 127, 255, 511, 1023, 2047, 1365, 8191, 16383, 32767, 65535, 131071, 29127, 524287, 209715, 299593, 4194303, 8388607, 5592405, 33554431, 67108863, 134217727, 268435455, 536870911, 357913941, 2147483647, 4294967295, 8589934591, 17179869183
Offset: 1

Views

Author

N. J. A. Sloane, Dec 13 2003

Keywords

Comments

F(n) is the resistance across a single resistor of an n-dimensional hypercube made of 1 ohm resistors. - Peter J. C. Moses, May 27 2004
Also, numerators of BINOMIAL transform of sequence [1, 1/2, 1/3, 1/4, ...]. - Gary W. Adamson, Apr 26 2005

Examples

			n=3: [1, 1/2, 1/3] -> [3/4, 5/6] -> [7/12], so F(3) = 7/12. Sequence of F(n)'s begins 1, 3/4, 7/12, 15/32, 31/80, 21/64, 127/448, 255/1024, ...
		

References

  • Putnam Competition, 2003, Problem B2.

Crossrefs

Cf. A090634 (denominators).

Programs

  • Haskell
    import Data.Ratio (numerator, (%))
    a090633 n = numerator z where
       [z] = (until ((== 1) . length) avg) $ map (1 %) [1..n]
       avg xs = zipWith (\x x' -> (x + x') / 2) (tail xs) xs
    -- Reinhard Zumkeller, Dec 08 2011
  • Maple
    f := proc(L) local t1,i; t1 := []; for i from 1 to nops(L)-1 do t1 := [op(t1), (L[i]+L[i+1])/2]; od: t1; end; f2 := n->[seq(1/i,i=1..n)];
    F := proc(n) local L,i; L := f2(n); for i from 1 to n-1 do L := f(L); od: op(L); end;
  • Mathematica
    a[n_]:=(2-2^(1-n))/n; a[1]:=1; Table[Numerator[a[n]], {n, 40}]
    a[n_]:=a[n-1]+(2^(1-n)*(1+n)-2)/((n-1)*n); a[1]:=1; Table[Numerator[a[n]], {n, 40}]
    a[n_]:=a[n-1]*(2^n-1)*(n-1)/(n*(2^n-2)); a[1]:=1; Table[Numerator[a[n]], {n, 40}]

Formula

From Peter J. C. Moses, May 27 2004: (Start)
F(n) = (2-2^(1-n))/n.
G.f. for F: 2*(log(1-x/2)-log(1-x)).
E.g.f. for F: Integral 2*(e^x-e^(x/2))/x dx. (End)