A090633 Start with the sequence [1, 1/2, 1/3, ..., 1/n]; form new sequence of n-1 terms by taking averages of successive terms; repeat until reach a single number F(n); a(n) = numerator of F(n).
1, 3, 7, 15, 31, 21, 127, 255, 511, 1023, 2047, 1365, 8191, 16383, 32767, 65535, 131071, 29127, 524287, 209715, 299593, 4194303, 8388607, 5592405, 33554431, 67108863, 134217727, 268435455, 536870911, 357913941, 2147483647, 4294967295, 8589934591, 17179869183
Offset: 1
Examples
n=3: [1, 1/2, 1/3] -> [3/4, 5/6] -> [7/12], so F(3) = 7/12. Sequence of F(n)'s begins 1, 3/4, 7/12, 15/32, 31/80, 21/64, 127/448, 255/1024, ...
References
- Putnam Competition, 2003, Problem B2.
Links
- Alois P. Heinz, Table of n, a(n) for n = 1..3320 (first 200 terms from T. D. Noe)
- F. Nedermeyer and Y. Smorodinsky, Resistance in the multidimensional cube, Quantum, Sept/October 1996, pp. 12-15 (beware file is 75Mb).
Crossrefs
Cf. A090634 (denominators).
Programs
-
Haskell
import Data.Ratio (numerator, (%)) a090633 n = numerator z where [z] = (until ((== 1) . length) avg) $ map (1 %) [1..n] avg xs = zipWith (\x x' -> (x + x') / 2) (tail xs) xs -- Reinhard Zumkeller, Dec 08 2011
-
Maple
f := proc(L) local t1,i; t1 := []; for i from 1 to nops(L)-1 do t1 := [op(t1), (L[i]+L[i+1])/2]; od: t1; end; f2 := n->[seq(1/i,i=1..n)]; F := proc(n) local L,i; L := f2(n); for i from 1 to n-1 do L := f(L); od: op(L); end;
-
Mathematica
a[n_]:=(2-2^(1-n))/n; a[1]:=1; Table[Numerator[a[n]], {n, 40}] a[n_]:=a[n-1]+(2^(1-n)*(1+n)-2)/((n-1)*n); a[1]:=1; Table[Numerator[a[n]], {n, 40}] a[n_]:=a[n-1]*(2^n-1)*(n-1)/(n*(2^n-2)); a[1]:=1; Table[Numerator[a[n]], {n, 40}]
Formula
From Peter J. C. Moses, May 27 2004: (Start)
F(n) = (2-2^(1-n))/n.
G.f. for F: 2*(log(1-x/2)-log(1-x)).
E.g.f. for F: Integral 2*(e^x-e^(x/2))/x dx. (End)
Comments