cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A258651 A(n,k) = n^(k) = k-th arithmetic derivative of n; square array A(n,k), n>=0, k>=0, read by antidiagonals.

Original entry on oeis.org

0, 0, 1, 0, 0, 2, 0, 0, 1, 3, 0, 0, 0, 1, 4, 0, 0, 0, 0, 4, 5, 0, 0, 0, 0, 4, 1, 6, 0, 0, 0, 0, 4, 0, 5, 7, 0, 0, 0, 0, 4, 0, 1, 1, 8, 0, 0, 0, 0, 4, 0, 0, 0, 12, 9, 0, 0, 0, 0, 4, 0, 0, 0, 16, 6, 10, 0, 0, 0, 0, 4, 0, 0, 0, 32, 5, 7, 11, 0, 0, 0, 0, 4, 0, 0, 0, 80, 1, 1, 1, 12
Offset: 0

Views

Author

Alois P. Heinz, Jun 06 2015

Keywords

Examples

			Square array A(n,k) begins:
  0,  0,  0,  0,  0,   0,   0,   0,    0,    0, ...
  1,  0,  0,  0,  0,   0,   0,   0,    0,    0, ...
  2,  1,  0,  0,  0,   0,   0,   0,    0,    0, ...
  3,  1,  0,  0,  0,   0,   0,   0,    0,    0, ...
  4,  4,  4,  4,  4,   4,   4,   4,    4,    4, ...
  5,  1,  0,  0,  0,   0,   0,   0,    0,    0, ...
  6,  5,  1,  0,  0,   0,   0,   0,    0,    0, ...
  7,  1,  0,  0,  0,   0,   0,   0,    0,    0, ...
  8, 12, 16, 32, 80, 176, 368, 752, 1520, 3424, ...
  9,  6,  5,  1,  0,   0,   0,   0,    0,    0, ...
		

Crossrefs

Rows n=0,1,4,8 give: A000004, A000007, A010709, A129150.
Row 15: A090636, Row 28: A090637, Row 63: A090635, Row 81: A129151, Row 128: A369638, Row 1024: A214800, Row 15625: A129152.
Main diagonal gives A185232.
Antidiagonal sums give A258652.
Cf. also A328383.

Programs

  • Maple
    d:= n-> n*add(i[2]/i[1], i=ifactors(n)[2]):
    A:= proc(n, k) option remember; `if`(k=0, n, d(A(n, k-1))) end:
    seq(seq(A(n, h-n), n=0..h), h=0..14);
  • Mathematica
    d[n_] := n*Sum[i[[2]]/i[[1]], {i, FactorInteger[n]}]; d[0] = d[1] = 0;
    A[n_, k_] := A[n, k] = If[k == 0, n, d[A[n, k-1]]];
    Table[A[n, h-n], {h, 0, 14}, {n, 0, h}] // Flatten (* Jean-François Alcover, Apr 27 2017, translated from Maple *)

Formula

A(n,k) = A003415^k(n).

A090635 Trajectory of 63 under the map k -> A003415(k) (taking the arithmetic derivative).

Original entry on oeis.org

63, 51, 20, 24, 44, 48, 112, 240, 608, 1552, 3120, 8144, 16304, 32624, 65264, 130544, 264928, 678448, 1356912, 4979232, 19424016, 58272480, 226593936, 763164288, 3467499840, 16339520448, 65370077568, 295266178368, 1223245608192, 6931725175296, 40582548986112
Offset: 1

Views

Author

N. J. A. Sloane, Dec 14 2003

Keywords

References

  • A. M. Gleason et al., The William Lowell Putnam Mathematical Competition: Problems and Solutions 1938-1964, Math. Assoc. America, 1980, p. 295.

Crossrefs

Programs

  • PARI
    A090635(n, a=63)={if(n<0, vector(-n, n, if(n>1, a=A003415(a), a)), for(n=2, n, a=A003415(a)); a)}  \\ For n<0 return the vector a[1..-n]. - M. F. Hasler, Nov 27 2019

Formula

a(n+1) = A003415(a(n)), a(1) = 63. a(n) = 4*A129286(n-3) for n > 2. - M. F. Hasler, Nov 27 2019

Extensions

More explicit name from M. F. Hasler, Nov 27 2019
Showing 1-2 of 2 results.