A090677 Number of ways to partition n into sums of squares of primes.
1, 0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 2, 1, 2, 2, 2, 1, 2, 2, 2, 2, 2, 3, 2, 2, 2, 4, 3, 2, 3, 4, 4, 2, 3, 4, 5, 3, 3, 5, 5, 4, 3, 5, 5, 5, 4, 5, 6, 5, 5, 5, 7, 6, 6, 6, 7, 7, 6, 7, 7, 8, 7, 8, 8, 8, 8, 8, 9, 8, 9, 9, 10, 9, 9, 10, 11, 11, 10, 11
Offset: 0
Keywords
Examples
a(25)=2 because 25 = 5^2 = 4*(2^2)+3^2. a(83)=8 because 83 = 3^2+5^2+7^2 = 4*(2^2)+2*(3^2)+7^2 = 2*(2^2)+3*(5^2) = 6*(2^2)+3^2+2*(5^2) = 2^2+6*(3^2)+5^2 = 10*(2^2)+2*(3^2)+5^2 = 5*(2^2)+7*(3^2) = 14*(2^2)+3*(3^2).
References
- R. F. Churchouse, Representation of integers as sums of squares of primes. Caribbean J. Math. 5 (1986), no. 2, 59-65.
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- Christian N. K. Anderson, Table of coefficients b_i solving n=sum(b_i * prime(i)^2), for n=0..500
- Roger Woodford, Bounds for the Eventual Positivity of Difference Functions of Partitions, Journal of Integer Sequences, Vol. 10 (2007), Article 07.1.3.
Crossrefs
Programs
-
Mathematica
CoefficientList[ Series[ Product[1/(1 - x^Prime[i]^2), {i, 111}], {x, 0, 101}], x] (* Robert G. Wilson v, Sep 20 2004 *)
Formula
G.f.: 1/((1-x^4)*(1-x^9)*(1-x^25)*(1-x^49)*(1-x^121)*(1-x^169)*(1-x^289)...).
G.f.: 1 + Sum_{i>=1} x^(prime(i)^2) / Product_{j=1..i} (1 - x^(prime(j)^2)). - Ilya Gutkovskiy, May 07 2017
Comments