cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A090678 a(n) = A088567(n) mod 2.

Original entry on oeis.org

1, 1, 1, 0, 0, 1, 0, 1, 0, 1, 1, 0, 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, 1, 0, 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 0, 1, 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1, 0, 1, 1, 0, 1, 0, 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 0, 1, 0, 1, 1, 0, 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, 1, 0, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1, 0, 1, 0
Offset: 0

Views

Author

N. J. A. Sloane, Dec 20 2003

Keywords

Comments

a(n) = -(-1)^[n/2]*A110036(n)/2 for n>=2, where A110036 gives the partial quotients of the continued fraction expansion of 1 + Sum_{n>=0} 1/x^(2^n). - Paul D. Hanna, Jul 09 2005

Crossrefs

b(8m) is (apart from the first term) A038189(m).

Programs

  • Mathematica
    nmax = 104; f = 1 + x/(1 - x) + Sum[x^(3*2^(k - 1))/Product[1 - x^(2^j), {j, 0, k}], {k, 1, Log[2, nmax]}];
    a[n_] := Mod[SeriesCoefficient[f, {x, 0, n}], 2];
    Table[a[n], {n, 0, nmax}] (* Jean-François Alcover, Jul 26 2018 *)
  • PARI
    {a(n)=(-1)^(n\2)*polcoeff(1+x-x^2*(1+x)/(1+x^2)+ sum(k=1,#binary(n),x^(3*2^(k-1))/prod(j=0,k,1+x^(2^j)+x*O(x^n))),n)} /* Paul D. Hanna */

Formula

b(0) == 1; if n is odd, b(n) == b(n-1) + 1; b(8m+2) == 1; b(8m+6) == 0; b(16m+4) == 0; b(16m+12) == 1; for m>0, b(16m) == b(8m), b(32m+8) == 0, b(32m+24) == 1. In other words, for m>0, b(8m) is the value of the bit immediately to the left of the rightmost 1 when m is written in binary.
a(n) = (-1)^floor(n/2)*A110037(n). - Paul D. Hanna, Jul 09 2005