A090695 Integers which are not the sum of 2 integers A and B with AB+1 and AB-1 both primes. In other words, the product cannot be the middle integer of a Twin Prime pair.
1, 2, 3, 6, 10, 12, 14, 15, 20, 26, 30, 40, 45, 54, 60, 66, 75, 80, 90, 100, 105, 117, 120, 150, 180, 250, 270, 280, 290, 315, 320, 342, 360, 390, 410, 432, 440, 450, 455, 480, 495, 510, 540, 560, 590, 630, 645, 765, 810, 980, 1080, 1170, 1220, 1305, 1430, 1530, 1860, 2235, 2310, 2670, 3120
Offset: 1
Examples
15 is a member: 15 is the sum of these pairs of integers: (2+13) (3+12) (4+11) (5+10) (6+9) (7+8). Their products (2*13) (3*12), etc. plus and minus 1 are not primes and therefore the products cannot be the middle integers of Twin Prime sets.
Programs
-
PARI
isok(n) = {for (a=1, n\2, ab = a*(n-a); if (isprime(ab+1) && isprime(ab-1), return (0));); return (1);} \\ Michel Marcus, Jul 12 2013
Comments