cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A090710 Primes with digits less than 7 whose decimal representation is also a prime when interpreted in base 7.

Original entry on oeis.org

2, 3, 5, 23, 41, 43, 61, 113, 131, 241, 313, 401, 421, 443, 461, 463, 661, 1013, 1033, 1051, 1123, 1231, 1301, 1433, 1453, 1543, 1613, 2111, 2131, 2153, 2203, 2333, 2441, 2531, 2551, 3121, 3163, 3251, 3323, 3433, 3541, 4001, 4111, 4153, 4201, 4241, 4421
Offset: 1

Views

Author

Cino Hilliard, Jan 18 2004

Keywords

Comments

Note that the definition of, e.g., A090714 works "the other way round". - M. F. Hasler, Jan 03 2014

Examples

			23 is a prime and a valid number in base 7, and 23 [base 7] = 17 [base 10] is again a prime.
		

Crossrefs

Programs

  • Mathematica
    Select[ FromDigits@# & /@ IntegerDigits[ Prime@ Range@ 270, 7], PrimeQ] (* Robert G. Wilson v, Jan 05 2014 *)
    FromDigits/@Select[Tuples[{0,1,2,3,4,5,6},4],AllTrue[ {FromDigits[ #], FromDigits[ #,7]}, PrimeQ]&] (* The program uses the AllTrue function from Mathematica version 10 *) (* Harvey P. Dale, Dec 29 2015 *)
  • PARI
    is_A090710(p,b=7)=vecmax(d=digits(p))M. F. Hasler, Jan 03 2014
    
  • PARI
    fixBase(n, oldBase, newBase)=my(d=digits(n, oldBase), t=newBase-1); for(i=1, #d, if(d[i]>t, for(j=i, #d, d[j]=t); break)); fromdigits(d, newBase)
    list(lim)=my(v=List(), t); forprime(p=2, fixBase(lim\1, 10, 7), if(isprime(t=fromdigits(digits(p, 7), 10)), listput(v, t))); Vec(v) \\ Charles R Greathouse IV, Nov 07 2016

Extensions

Name, example and offset corrected by M. F. Hasler, Jan 03 2014