A090723 a(1) = 1; for n > 1, number of partitions of n into distinct odd parts such that the two largest parts differ by 2.
1, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 1, 1, 0, 1, 2, 1, 0, 1, 2, 2, 1, 1, 3, 3, 1, 2, 4, 3, 2, 3, 5, 5, 3, 4, 7, 6, 4, 6, 9, 8, 6, 8, 11, 11, 9, 10, 15, 15, 11, 14, 19, 18, 16, 19, 24, 24, 21, 24, 31, 31, 27, 32, 40, 39, 36, 41, 49, 50, 47, 52, 63, 64, 59, 67, 79, 79, 77, 85, 98, 101, 97, 106
Offset: 1
Keywords
Examples
a(25)=3 as 25=1+3+5+7+9=5+9+11=1+11+13.
Programs
-
Maple
g:=sum(x^(k^2)/product(1-x^(2*j),j=2..k),k=1..10): gser:=series(g,x=0,95): seq(coeff(gser,x,n),n=1..92); # Emeric Deutsch, Mar 29 2006
-
Mathematica
nmax = 100; Rest[CoefficientList[Series[x + Sum[x^(4*k)*Product[(1 + x^(2*j - 1)), {j, 1, k-1}], {k, 1, nmax}], {x, 0, nmax}], x]] (* Vaclav Kotesovec, Jun 15 2025 *)
-
PARI
{ v=[1,0,0,1,0,0,0,1,1,0,0,1,1,0,1,2,1,0,1,2,2,1,1,3,3,1,2,4,3,2]; for (i=2,30,c=0; forstep (j=i,1,-2,c+=v[j]); print1(c",")) }
Formula
From Emeric Deutsch, Mar 29 2006: (Start)
G.f.: x+sum(x^(4k)*product(1+x^(2j-1), j=1..k-1), k=1..infinity).
G.f.: sum(x^(k^2)/product(1-x^(2j), j=2..k), k=1..infinity). (End)
a(n) ~ Pi * exp(Pi*sqrt(n/6)) / (2^(9/4) * 3^(3/4) * n^(5/4)). - Vaclav Kotesovec, Jun 15 2025
Extensions
More terms from Vladeta Jovovic, Feb 10 2004
Comments