A090748 Numbers k such that 2^(k+1) - 1 is prime.
1, 2, 4, 6, 12, 16, 18, 30, 60, 88, 106, 126, 520, 606, 1278, 2202, 2280, 3216, 4252, 4422, 9688, 9940, 11212, 19936, 21700, 23208, 44496, 86242, 110502, 132048, 216090, 756838, 859432, 1257786, 1398268, 2976220, 3021376, 6972592, 13466916, 20996010, 24036582, 25964950, 30402456, 32582656
Offset: 1
Keywords
Examples
1 is in the sequence because 2^2 - 1 = 3 is prime.
Links
- Amiram Eldar, Table of n, a(n) for n = 1..48 (terms 1..47 from Ivan Panchenko)
- Omar E. Pol, Determinacion geometrica de los numeros primos y perfectos.
Crossrefs
Programs
-
Magma
[n: n in [1..5*10^3] |IsPrime(2^(n+1)-1)]; // Vincenzo Librandi, Jul 28 2016
-
Mathematica
Select[Range[0, 10^4], PrimeQ[2^(# + 1) - 1] &] (* Vincenzo Librandi, Jul 28 2016 *)
-
PARI
is(n)=ispseudoprime(2^(n+1)-1) \\ Charles R Greathouse IV, Aug 21 2016
Formula
a(n) = A000043(n) - 1.
2^(a(n) + 1) = A051027(2^a(n)). - Juri-Stepan Gerasimov, Aug 21 2016 [corrected by Jerzy R Borysowicz, Feb 26 2025]
Extensions
Edited, corrected and extended by Robert G. Wilson v, Feb 09 2004
a(39) from Omar E. Pol, Jan 23 2009
a(40)-a(44) from Ivan Panchenko, Apr 11 2018
Comments