A090752 Number of compositions (ordered partitions) of n whereby at most 1 increase is allowed and this increase must be by 1.
1, 2, 4, 7, 13, 21, 36, 56, 89, 134, 204, 296, 435, 618, 879, 1223, 1702, 2323, 3171, 4263, 5720, 7589, 10043, 13158, 17202, 22305, 28839, 37038, 47437, 60391, 76686, 96872, 122047, 153081, 191513, 238625, 296620, 367379, 453948, 559112, 687107
Offset: 1
Keywords
Examples
a(5)=13, as we have 5, 41, 32, 23, 311, 221, 212, 122, 2111, 1211, 1121, 1112 and 11111.
Programs
-
PARI
Ta = matrix(70, 70, i, j, -1); Tn = Ta; doAllowed(last, left) = local(c); c = Ta[last, left]; if (c == -1, c = 0; for (i = 1, min(last, left), c += b(i, left - i, 1)); c += b(last + 1, left - last - 1, 0); Ta[last, left] = c); c; doNot(last, left) = local(c); c = Tn[last, left]; if (c == -1, c = 0; for (i = 1, min(last, left), c += b(i, left - i, 0)); Tn[last, left] = c); c; b(last, left, allowed) = if (left == 0, return(1)); if (left < 0, return(0)); if (allowed, doAllowed(last, left), doNot(last, left)); a(n) = sum (i = 1, n, b(i, n - i, 1)); \\ David Wasserman, Feb 02 2006
Extensions
More terms from Vladeta Jovovic, Feb 13 2004
More terms from David Wasserman, Feb 02 2006
Comments