A090767 Numbers of the form 3*x*y*z + 2(x*y + y*z + z*x) + (x + y + z) for x, y, z positive integers.
12, 20, 28, 33, 36, 44, 46, 52, 54, 59, 60, 64, 68, 72, 75, 76, 82, 84, 85, 92, 96, 98, 100, 104, 105, 108, 111, 116, 117, 118, 124, 128, 132, 133, 136, 137, 138, 140, 144, 148, 150, 151, 154, 156, 159, 162, 163, 164, 170, 172, 174, 176, 180, 184, 188, 189, 190
Offset: 1
Keywords
Examples
a(1) = 12 because there are 12 edges to a cube.
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
Crossrefs
Cf. A047845.
Programs
-
Maple
SeqGen1 := proc(n,N) local a,b,c,F,V,v; # n specifies the search space; N specifies the maximal number to appear in the initial segment of the sequence F := 3*x*y*z + 2*(x*y+y*z+z*x)+x+y+z; V := {}; for a from 1 to n do for b from 1 to n do for c from b to n do v := subs(x=a,y=b,F); if v < N then V := V union {v};fi; od;od; sort(V) end: # alternative: N:= 1000: # to get all terms <= N S:= {seq(seq(seq(3*x*y*z + 2*(x*y+y*z+z*x)+(x+y+z), z = 1 .. min(y, (-2*x*y+N-x-y)/(3*x*y+2*x+2*y+1))), y = 1 .. min(x, (N-3*x-1)/(5*x+3))), x = 1 .. (N-4)/8)}: sort(convert(S,list)); # Robert Israel, Feb 18 2016
-
Mathematica
M = 1000; S = Table[3 x y z + 2(x y + y z + z x) + (x + y + z), {x, 1, (M - 4)/8}, {y, 1, Min[x, (M - 3 x - 1)/(5 x + 3)]}, {z, 1, Min[y, (-2 x y + M - x - y)/(3 x y + 2 x + 2 y + 1)]}] // Flatten // Union (* Jean-François Alcover, Apr 11 2019, after Robert Israel *)
Extensions
More terms from Ray Chandler, Feb 04 2004
Comments