A090789 Even numbers n such that 37^2 (the square of the first irregular prime) divides the numerator of Bernoulli(n).
284, 1184, 1616, 2516, 2738, 2948, 3848, 4280, 5180, 5476, 5612, 6512, 6944, 7844, 8214, 8276, 9176, 9608, 10508, 10940, 10952, 11840, 12272, 13172, 13604, 13690, 14504, 14936, 15836, 16268, 16428, 17168, 17600, 18500, 18932, 19166
Offset: 1
Keywords
Links
- Vincenzo Librandi, Table of n, a(n) for n = 1..1000
- Bernd Kellner, On irregular pairs of higher order (in German)
- S. S. Wagstaff, Jr., Prime divisors of the Bernoulli and Euler numbers
- Eric Weisstein's World of Mathematics, Bernoulli Number
Crossrefs
Twice A092230.
Programs
-
Maple
N:= 20000: # to get all terms <= N sort(convert({seq(284+36*37*k, k=0..floor((N-284)/36/37)), seq(1184+36*37*k, k=0..floor((N-1184)/36/37)), seq(2*37^2*k, k=1..floor(N/2/37^2))},list)); # Robert Israel, Aug 20 2015
-
Mathematica
nn=10; Union[284+36*37*Range[0, 2nn], 37(32+36*Range[0, 2nn]), 2*37^2*Range[nn]]
Formula
These numbers are the union of three arithmetic progressions: 284 + 36*37*k, 32*37 + 36*37*k and 2*37^2*k.
Extensions
Definition corrected by Robert Israel, Aug 20 2015
Comments