cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A090841 Smallest prime whose product of digits is 7^n.

Original entry on oeis.org

11, 7, 11177, 1777, 71777, 1777717, 1177717771, 77777177, 7177717777, 1777777777, 71777777777, 1717777777777, 7177777777777, 17777777777777, 17177777777777717, 7717777777777777, 1177777777177777777, 1777777777777777177, 7777177777777777777
Offset: 0

Views

Author

Robert G. Wilson v, Dec 09 2003

Keywords

Examples

			a(6) = 1177717771 because its digital product is 7^6, and it is prime.
		

Crossrefs

Programs

  • Maple
    a:= proc(n) local k, t; for k from 0 do t:= min(select(isprime,
          map(x-> parse(cat(x[])), combinat[permute]([1$k, 7$n]))));
          if tAlois P. Heinz, Nov 07 2021
  • Mathematica
    NextPrim[n_] := Block[{k = n + 1}, While[ !PrimeQ[k], k++ ]; k]; a = Table[0, {18}]; p = 2; Do[q = Log[7, Times @@ IntegerDigits[p]]; If[q != 0 && IntegerQ[q] && a[[q]] == 0, a[[q]] = p; Print[q, " = ", p]]; p = NextPrim[p], {n, 1, 10^9}]
    For a(8); a = Map[ FromDigits, Permutations[{1, 1, 7, 7, 7, 7, 7, 7, 7, 7}]]; Min[ Select[a, PrimeQ[ # ] &]]
  • Python
    from sympy import isprime
    from sympy.utilities.iterables import multiset_permutations as mp
    def a(n):
        if n < 2: return [11, 7][n]
        digits = n
        while True:
            for p in mp("1"*(digits-n) + "7"*n, digits):
                t = int("".join(p))
                if isprime(t): return t
            digits += 1
    print([a(n) for n in range(19)]) # Michael S. Branicky, Nov 07 2021

Extensions

a(17) and beyond from Michael S. Branicky, Nov 07 2021