A090842 Square array of numbers read by antidiagonals where T(n,k) = ((k+3)*(k+2)^n-2)/(k+1).
1, 1, 4, 1, 5, 10, 1, 6, 17, 22, 1, 7, 26, 53, 46, 1, 8, 37, 106, 161, 94, 1, 9, 50, 187, 426, 485, 190, 1, 10, 65, 302, 937, 1706, 1457, 382, 1, 11, 82, 457, 1814, 4687, 6826, 4373, 766, 1, 12, 101, 658, 3201, 10886, 23437, 27306, 13121, 1534, 1, 13, 122, 911, 5266
Offset: 0
Examples
Rows begin: 1 4 10 22 ... 1 5 17 53 ... 1 6 26 106 ... 1 7 37 187 ...
Links
- L. He, X. Liu and G. Strang, Trees with Cantor Eigenvalue Distribution, Studies in Applied Mathematics 110 (2), 123-138, 2003.
Formula
The total number of nodes on a tree with degree k interior nodes and degree 1 boundary nodes is given by N(k, r) = (k*(k-1)^r-2)/(k-2).
G.f.: Sum_{k>=0} (1+x*y)/(1-x*y)/(1-(k+2)*x*y)*y^k. - Vladeta Jovovic, Dec 12 2003
Comments