A222082 Self-convolution square of A090845.
1, 2, 5, 10, 20, 40, 67, 126, 203, 354, 571, 908, 1486, 2250, 3586, 5322, 8186, 12234, 17976, 26970, 38435, 57024, 80805, 116376, 165914, 232352, 332196, 456154, 645469, 885826, 1225998, 1692686, 2290512, 3168986, 4242896, 5805526, 7782803, 10459912, 14110205
Offset: 0
Keywords
Examples
G.f.: A(x) = 1 + 2*x + 5*x^2 + 10*x^3 + 20*x^4 + 40*x^5 + 67*x^6 +... Let G(x) = A(x)^(1/2) denote the g.f. of A090845: G(x) = 1 + x + 2*x^2 + 3*x^3 + 5*x^4 + 9*x^5 + 10*x^6 + 20*x^7 + 22*x^8 + 40*x^9 + 51*x^10 + 67*x^11 + 114*x^12 + 126*x^13 + 203*x^14 +... then the coefficients of G(x)^2 and G(x)^3 begin: G(x)^2: [1, 2, 5, 10, 20, 40, 67, 126, 203, 354, 571, 908, 1486, ...]; G(x)^3: [1, 3, 9, 22, 51, 114, 230, 468, 885, 1674, 3045, 5418, ..]; where the sorted union of these coefficients yield sequence A090845.
Links
- Paul D. Hanna, Table of n, a(n) for n = 0..10000
Programs
-
PARI
{a(n)=local(A=[1, 1]); for(i=1, #binary(3*n+1), A=vecsort(concat(Vec(Ser(A)^2), Vec(Ser(A)^3)))); Vec(Ser(A)^2)[n+1]} for(n=0, 60, print1(a(n), ", "))
Comments