A090857 a(n) is the least positive integer such that the integer part of the arithmetic-geometric mean of a(n) and 2^n is equal to 3^n.
1, 5, 17, 59, 203, 690, 2308, 7621, 24913, 80794, 260303, 834057, 2660049, 8449715, 26747224, 84407894, 265647824, 834016199, 2612728134, 8168761695, 25494031748, 79434416090, 247130166428, 767788267178, 2382328079245
Offset: 0
Keywords
Examples
a(6)=2308 since floor(agm(2308,2^6))=729=3^6, but floor(agm(2307,2^6))=728.
Formula
floor( agm(a(n), 2^n) ) = 3^n, for n>=0.