A090873 a(n) is the smallest number m such that n^2^k + m^2^k is prime for k=0,1,2,3 and 4.
1, 1, 218368, 9324385, 6628674, 601, 365082, 532253, 449140, 4193407, 175746, 2857547, 2752708, 6315245, 80612, 3354745, 10892, 953, 6577504, 157437, 2247676, 11357637, 7650, 272935, 318784, 8034141, 1158380, 22315, 610550, 340357
Offset: 1
Keywords
Examples
a(2)=1 because 2^2^k + 1 is prime for k= 0,1,2,3 and 4.
Links
- Kellen Shenton, Table of n, a(n) for n = 1..10000
Programs
-
Mathematica
a[n_] := (For[m=1, !(PrimeQ[m+n]&&PrimeQ[m^2+n^2]&&PrimeQ[m^4+n^4]&& PrimeQ[m^8+n^8]&&PrimeQ[m^16+n^16]), m++ ];m);Do[Print[a[n]], {n, 50}]
Formula
a[n_] := (For[m=1, !(PrimeQ[m+n]&&PrimeQ[m^2+n^2]&&PrimeQ[m^4+n^4]&& PrimeQ[m^8+n^8]&&PrimeQ[m^16+n^16]), m++ ];m)