A087400 Primes p such that p+2 is a piptorial number. Also numbers such that A080696(n)- 2 is prime.
13, 163, 2803, 3565153, 210344143, 86915972211813115391953, 4419764102942908730796303703, 114681479899746991802547357477494803
Offset: 1
Keywords
Examples
(Product of first four pips) - 2 = 3*5*11*17 - 2 = 2805 - 2 = 2803, which is prime, so 2803 is in the sequence.
Programs
-
Mathematica
seq[kmax_] := Module[{r = 1, p = 1, s = {}}, Do[p = NextPrime[p]; r *= Prime[p]; If[PrimeQ[r - 2], AppendTo[s, r - 2]], {k, 1, kmax}]; s]; seq[20] (* Amiram Eldar, Jul 05 2024 *)
-
PARI
piptorial(n) = { s=0; p=1; for(x=1,n, p=p*prime(prime(x)); if(isprime(p-2),print1(p-2","); s+=1.0/(p-2)) ); print(); print(s) }
Comments