cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A090889 Double partial sums of (n * its dyadic valuation).

Original entry on oeis.org

0, 0, 2, 4, 14, 24, 40, 56, 96, 136, 186, 236, 310, 384, 472, 560, 712, 864, 1034, 1204, 1414, 1624, 1856, 2088, 2392, 2696, 3026, 3356, 3742, 4128, 4544, 4960, 5536, 6112, 6722, 7332, 8014, 8696, 9416, 10136, 10976, 11816, 12698, 13580
Offset: 0

Views

Author

Ralf Stephan, Feb 13 2004

Keywords

Comments

Hwang-Janson-Tsai paper, p. 39: "Note that the recurrence provided on OEIS for A090889 is incorrect (and the generating function misses a factor of 2)." - Michael De Vlieger, Oct 30 2022

Crossrefs

Programs

  • Mathematica
    {0}~Join~Accumulate@ Accumulate@ Array[# IntegerExponent[#, 2] &, 43] (* Michael De Vlieger, Oct 30 2022 *)
  • PARI
    a(n)=sum(k=1,n,bitand(k,n-k)+k*(n-k))
    
  • PARI
    a(n)=if(n<1,0,if(n%2==0,2*a(n/2)+2*a(n/2-1)+n/2*(n/2+1)*(n+1)/3,4*a((n-1)/2)+2/3*((n-1)/2)*((n-1)/2+1)*((n-1)/2+2)))
    
  • PARI
    a(n)=sum(l=0,n,sum(k=0,l,k*valuation(k,2)))
    
  • Python
    def A090889(n): return (sum(k&n-k for k in range(1,n+1>>1))<<1)+(0 if n&1 else n>>1)+n*(n-1)*(n+1)//6 # Chai Wah Wu, May 08 2023

Formula

a(0)=0, a(2n) = 2a(n) + 2a(n-1) + n(n+1)(2n+1)/3, a(2n+1) = 4a(n) + (2/3)*(n+1)(n+2)(n+3).
G.f.: (1/(1-x)^2) * Sum_{k>=0} 2^k*t^2/(1-t^2)^2 where t=x^2^k.
a(n) = A006581(n) + A000292(n-1).