A090970 Number of primes strictly between T(n) and T(n+1), where T(n) = n-th triangular number.
1, 1, 1, 2, 2, 1, 2, 3, 2, 2, 3, 3, 3, 3, 2, 4, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 6, 4, 5, 3, 6, 6, 7, 5, 5, 6, 4, 8, 5, 6, 6, 8, 6, 8, 5, 7, 5, 11, 4, 6, 9, 7, 8, 9, 8, 7, 7, 9, 7, 8, 7, 12, 5, 9, 9, 11, 9, 7, 7, 12, 10, 10, 9, 9, 9, 6, 11, 10, 11, 9, 12, 11, 12, 9, 10, 11, 12, 10, 13, 9, 11, 10, 12
Offset: 1
Keywords
Examples
a(8)=3 because between T(8)=36 and T(9)=45 we have the prime numbers 37,41 and 43.
Links
- T. D. Noe, Table of n, a(n) for n = 1..10000
Programs
-
Maple
a:= proc(n) local ct,j: ct:=0: for j from n*(n+1)/2+1 to (n+1)*(n+2)/2-1 do if isprime(j)=true then ct:=ct+1 else ct:=ct fi: od: end: seq(a(n),n=1..103); # Emeric Deutsch, Feb 23 2005
-
Mathematica
With[{trs=Partition[Accumulate[Range[100]],2,1]},Join[{1},Rest[ PrimePi[ #[[2]]]- PrimePi[#[[1]]]&/@trs]]] (* Harvey P. Dale, Aug 25 2015 *)
-
Python
from sympy import primerange def A090970(n): return sum(1 for p in primerange((n*(n+1)>>1)+1,(n+2)*(n+1)>>1)) # Chai Wah Wu, May 22 2025
Extensions
More terms from Emeric Deutsch, Feb 23 2005