A091001 Number of walks of length n between adjacent nodes on the Petersen graph.
0, 1, 0, 5, 4, 33, 56, 253, 588, 2105, 5632, 18261, 52052, 161617, 473928, 1443629, 4287196, 12948969, 38672144, 116365957, 348398820, 1046594561, 3136987480, 9416554845, 28238479724, 84737808793, 254168687136, 762595539893
Offset: 0
References
- N. Biggs, Algebraic Graph Theory, Cambridge, 2nd. Ed., 1993, p. 20.
- F. Harary, Graph Theory, Addison-Wesley, 1969, p. 89.
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (2,5,-6).
Programs
-
GAP
List([0..30], n -> (3^(n+1)+(-2)^(n+3)+5)/30); # G. C. Greubel, Feb 01 2019
-
Magma
[(3^(n+1)+(-2)^(n+3)+5)/30: n in [0..30]]; // G. C. Greubel, Feb 01 2019
-
Mathematica
Table[(3^(n+1)+(-2)^(n+3)+5)/30, {n,0,30}] (* or *) LinearRecurrence[{2, 5,-6}, {0,1,0}, 30] (* G. C. Greubel, Feb 01 2019 *)
-
PARI
vector(30, n, n--; (3^(n+1)+(-2)^(n+3)+5)/30) \\ G. C. Greubel, Feb 01 2019
-
Sage
[(3^(n+1)+(-2)^(n+3)+5)/30 for n in (0..30)] # G. C. Greubel, Feb 01 2019
Formula
G.f.: x*(1-2*x)/((1-x)*(1+2*x)*(1-3*x)).
a(n) = (3^(n+1) + (-2)^(n+3) + 5)/30.
E.g.f.: (3*exp(3*x) - 8*exp(-2*x) +5*exp(x))/30. - G. C. Greubel, Feb 01 2019