cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A091001 Number of walks of length n between adjacent nodes on the Petersen graph.

Original entry on oeis.org

0, 1, 0, 5, 4, 33, 56, 253, 588, 2105, 5632, 18261, 52052, 161617, 473928, 1443629, 4287196, 12948969, 38672144, 116365957, 348398820, 1046594561, 3136987480, 9416554845, 28238479724, 84737808793, 254168687136, 762595539893
Offset: 0

Views

Author

Paul Barry, Dec 12 2003

Keywords

References

  • N. Biggs, Algebraic Graph Theory, Cambridge, 2nd. Ed., 1993, p. 20.
  • F. Harary, Graph Theory, Addison-Wesley, 1969, p. 89.

Programs

  • GAP
    List([0..30], n -> (3^(n+1)+(-2)^(n+3)+5)/30); # G. C. Greubel, Feb 01 2019
  • Magma
    [(3^(n+1)+(-2)^(n+3)+5)/30: n in [0..30]]; // G. C. Greubel, Feb 01 2019
    
  • Mathematica
    Table[(3^(n+1)+(-2)^(n+3)+5)/30, {n,0,30}] (* or *) LinearRecurrence[{2, 5,-6}, {0,1,0}, 30] (* G. C. Greubel, Feb 01 2019 *)
  • PARI
    vector(30, n, n--; (3^(n+1)+(-2)^(n+3)+5)/30) \\ G. C. Greubel, Feb 01 2019
    
  • Sage
    [(3^(n+1)+(-2)^(n+3)+5)/30 for n in (0..30)] # G. C. Greubel, Feb 01 2019
    

Formula

G.f.: x*(1-2*x)/((1-x)*(1+2*x)*(1-3*x)).
a(n) = (3^(n+1) + (-2)^(n+3) + 5)/30.
3^n = A091000(n) + 3*a(n) + 6*A091002(n).
a(n) = (A000244(n) - A001045(n+1)*(-1)^n - 6*A001045(n)*(-1)^n)/10.
a(n) = A091002(n+1) - 2*A091002(n). - R. J. Mathar, Oct 30 2014
E.g.f.: (3*exp(3*x) - 8*exp(-2*x) +5*exp(x))/30. - G. C. Greubel, Feb 01 2019