A091032 Second column (k=3) of array A090438 ((4,2)-Stirling2) divided by 8.
1, 60, 5040, 604800, 99792000, 21794572800, 6102480384000, 2134124568576000, 912338253066240000, 468333636574003200000, 284372184127734743040000, 201645730563302817792000000, 165147853331345007771648000000
Offset: 2
Links
- John Campbell, Applications of Gosper’s nonlocal derangement identity, Maple Transactions, 5, 1, Article 16724, Feb. 2025.
Crossrefs
Programs
-
Mathematica
a[n_] := (n - 1)*(2*n)!/4!; Array[a, 13, 2] (* Amiram Eldar, Nov 03 2022 *)
-
PARI
a(n) = (n-1)*(2*n)!/4!; \\ Amiram Eldar, Nov 03 2022
Formula
a(n) = A090438(n, 3)/8 = (n-1)*(2*n)!/4!
E.g.f.: (-3*hypergeom([1/2, 1], [], 4*x) + hypergeom([1, 3/2], [], 4*x) + 2)/(8*3!) (cf. A090438).
From Amiram Eldar, Nov 03 2022: (Start)
Sum_{n>=2} 1/a(n) = 60 - 24*Gamma - 24*cosh(1) + 24*CoshIntegral(1) - 24*sinh(1).
Sum_{n>=2} (-1)^n/a(n) = -12 + 24*gamma - 24*cos(1) - 24*CosIntegral(1) + 24*SinIntegral(1). (End)
a(n+1) = Sum_{j = 1..n} (-1)^(n+j) * j^(2*n+2) * binomial(2*n, n-j) (Campbell, Eq. 17). - Peter Bala, Mar 30 2025