cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A091035 Fifth column (k=6) of array A090438 ((4,2)-Stirling2).

Original entry on oeis.org

1, 840, 352800, 139708800, 59935075200, 29088489830400, 16183777978368000, 10339833534750720000, 7563588230670151680000, 6303583414831453470720000, 5951909813793488171827200000, 6330667711034891964579840000000
Offset: 3

Views

Author

Wolfdieter Lang, Jan 23 2004

Keywords

Crossrefs

Cf. A091034 (fourth column of A090438 divided by 24), A091036 (sixth column divided by 48), A053134, A090438.

Programs

  • Mathematica
    Table[Binomial[2n-2,4] (2n)!/6!,{n,3,20}] (* Harvey P. Dale, Jun 07 2021 *)
  • PARI
    a(n) = binomial(2*n-2, 4)*(2*n)!/6!; \\ Amiram Eldar, Nov 03 2022

Formula

a(n) = A090438(n, 6), n>=3.
a(n) = binomial(2*n-2, 4)*(2*n)!/6! = A053134(n-3)*(2*n)!/6!, n>=3.
E.g.f.: (Sum_{p=2..6} (((-1)^p)*binomial(6, p)*hypergeom([(p-1)/2, p/2], [], 4*x)) - 5)/6! (cf. A090438).
From Amiram Eldar, Nov 03 2022: (Start)
Sum_{n>=3} 1/a(n) = -594 + 1800*Gamma - 1008*cosh(1) - 1800*CoshIntegral(1) + 912*sinh(1) + 1464*SinhIntegral(1).
Sum_{n>=3} (-1)^(n+1)/a(n) = 1554 + 1080*gamma - 1248*cos(1) - 1080*CosIntegral(1) + 240*sin(1) - 1416*SinIntegral(1). (End)