A091043 Normalized triangle of odd numbered entries of even numbered rows of Pascal's triangle A007318.
1, 1, 1, 3, 10, 3, 1, 7, 7, 1, 5, 60, 126, 60, 5, 3, 55, 198, 198, 55, 3, 7, 182, 1001, 1716, 1001, 182, 7, 1, 35, 273, 715, 715, 273, 35, 1, 9, 408, 4284, 15912, 24310, 15912, 4284, 408, 9, 5, 285, 3876, 19380, 41990, 41990, 19380, 3876, 285, 5, 11, 770, 13167, 85272
Offset: 1
Examples
[1];[1,1];[3,10,3];[1,7,7,1];[5,60,126,60,5];... n=3: GCD(3,10,3)=GCD(3,10)=1=b(3)=A006519(3); n=4: GCD(4,28,28,4)=GCD(4,28)=4=b(4)=A006519(4).
Links
- W. Lang, First 9 rows.
Formula
a(n, m)= binomial(2*n, 2*m+1)/(2*b(n)), n>=m+1>=1, else 0, with b(n) := GCD(seq(binomial(2*n, 2*m+1)/2, m=0..n-1)), where GCD denotes the greatest common divisor of a set of numbers (here one half of the odd numbered entries in the even numbered rows of Pascal's triangle). It suffices to consider m=0..floor((n-1)/2) due to symmetry.
Comments