A091058 Number of n X n matrices over symbol set {1,...,n} equivalent under any permutation of row, columns or the symbol set.
1, 1, 5, 139, 332034, 173636442196, 27652322898323351716, 2006943506669869627232430791792, 95763314593596534914617136274432901605313744, 4114852471732264714685900791520508800628430894815984377778000
Offset: 0
Keywords
Links
Programs
-
Mathematica
b[n_, i_] := b[n, i] = If[n == 0, {0}, If[i < 1, {}, Flatten @ Table[Map[Function[p, p + j*x^i], b[n - i*j, i - 1]], {j, 0, n/i}]]]; A242095[n_, k_] := A242095[n, k] = With[{co = Coefficient, ex = Exponent}, Sum[Sum[Sum[Product[Product[With[{g = GCD[i, j]*co[s, x, i]*co[t, x, j]}, If[g == 0, 1, Sum[d*co[u, x, d], {d, Divisors[LCM[i, j]]}]^g]], {j, ex[t, x]}], {i, ex[s, x]}]/Product[i^co[u, x, i]*co[u, x, i]!, {i, ex[u, x]}]/Product[i^co[t, x, i]*co[t, x, i]!, {i, ex[t, x]}]/Product[i^co[s, x, i]*co[s, x, i]!, {i, ex[s, x]}], {u, b[k, k]}], {t, b[n, n]}], {s, b[n, n]}]]; a[n_] := A242095[n, n]; Table[Print[n, " ", a[n]]; a[n], {n, 0, 12}] (* Jean-François Alcover, May 29 2023, after Alois P. Heinz in A242095 *)
-
Sage
Pol.
= InfinitePolynomialRing(QQ) @cached_function def Z(n): if n == 0: return Pol.one() return sum(x[k]*Z(n-k) for k in (1..n))/n @cached_function def monprod(M): p = Pol.one() V = [m.variables() for m in M] T = cartesian_product(V) for t in T: r = [Pol.varname_key(str(u))[1] for u in t] j = [Pol(M[u[0]]).degree(u[1]) for u in enumerate(t)] lcm_r = lcm(r) p *= x[lcm_r]^(prod(r)/lcm_r*prod(j)) return p @cached_function def pol_isotop(n,k): P = Z(n) p = Pol.zero() coeffs = P.coefficients() mons = P.monomials() C = cartesian_product(k*[mons]) Csorted = [tuple(sorted(u)) for u in C] Cset = set(Csorted) for c in Cset: p += Csorted.count(c)*prod([coeffs[mons.index(u)] for u in c])*monprod(c) return p @cached_function def rule_sub(r,m): D = 0 for d in divisors(r): try: D += d*m.degrees()[-d-1] except: break return D def a(n,k=2): P = Z(n) coeffs = P.coefficients() Q = pol_isotop(n,k) inds = [Pol.varname_key(str(u))[1] for u in Q.variables()] p = 0 for mon in enumerate(P.monomials()): m = Pol(mon[1]) p += coeffs[mon[0]]*Q.subs({x[i]:rule_sub(i,m) for i in inds}) return p # Philip Turecek, Jun 17 2023
Formula
a(n) = Sum_{1*s_1+2*s_2+...=n, 1*t_1+2*t_2+...=n, 1*u_1+2*u_2+...=n} (fixA[s_1, s_2, ...;t_1, t_2, ...;u_1, u_2, ...]/ (1^s_1*s_1!*2^s_2*s_2!*... *1^t_1*t_1!*2^t_2*t_2!*... *1^u_1*u_1!*2^u_2*u_2!*...)) where fixA[...] = Product_{i, j>=1} ( (Sum_{d|lcm(i, j)} (d*u_d))^(gcd(i, j)*s_i*t_j)).
Extensions
a(9) from Alois P. Heinz, Aug 14 2014