A091093 In ternary representation: minimal number of editing steps (delete, insert or substitute) to transform n into n^2.
0, 0, 2, 1, 1, 2, 3, 2, 3, 2, 2, 4, 2, 4, 3, 3, 4, 4, 4, 4, 5, 3, 4, 3, 4, 3, 4, 3, 3, 4, 3, 3, 3, 5, 3, 5, 3, 3, 5, 5, 5, 6, 4, 3, 4, 4, 4, 5, 5, 4, 4, 5, 5, 5, 5, 5, 6, 5, 5, 5, 6, 4, 5, 4, 4, 5, 5, 4, 5, 4, 5, 5, 5, 4, 6, 4, 5, 4, 5, 4, 5, 4, 4, 5, 4, 4, 4, 5, 5, 5, 4, 4, 6, 4, 5, 4, 4, 5, 5, 5, 5, 6
Offset: 0
Examples
a(12)=2: 12->'110', insert a 2 between the 1's and insert a 0 at the end: '12100'->144=12^2.
Links
- Robert Israel, Table of n, a(n) for n = 0..10000
- Michael Gilleland, Levenshtein Distance [It has been suggested that this algorithm gives incorrect results sometimes. - _N. J. A. Sloane_]
- Eric Weisstein's World of Mathematics, Square Number
- Eric Weisstein's World of Mathematics, Ternary
Programs
-
Maple
A091093:= proc(x) local L1, L2; L1:= convert(map(`+`,ListTools:-Reverse(convert(x,base,3)),48),bytes); L2:= convert(map(`+`,ListTools:-Reverse(convert(x^2,base,3)),48),bytes); StringTools:-Levenshtein(L1,L2) end proc: seq(A091093(i),i=0..1000); # Robert Israel, May 06 2014