A091141
a(n) = 2*a(n-1) + 4*a(n-2) - 2*a(n-3) with initial terms 1, 4, 13.
Original entry on oeis.org
1, 4, 13, 40, 124, 382, 1180, 3640, 11236, 34672, 107008, 330232, 1019152, 3145216, 9706576, 29955712, 92447296, 285304288, 880486336, 2717295232, 8385927232, 25880062720, 79869243904, 246486884224, 760690618624, 2347590286336, 7244969278720, 22358918465536
Offset: 1
-
a[n_] := (MatrixPower[{{1, 1, 1}, {3, 1, 0}, {2, 0, 0}}, n-1].{{1}, {1}, {1}})[[2, 1]]
LinearRecurrence[{2,4,-2},{1,4,13},30] (* Harvey P. Dale, Jun 19 2018 *)
-
Vec(x*(x+1)^2/(2*x^3-4*x^2-2*x+1) + O(x^100)) \\ Colin Barker, May 21 2015
A091142
a(n) = 2*a(n-1) + 4*a(n-2) - 2*a(n-3) with initial terms 1, 2, 6.
Original entry on oeis.org
1, 2, 6, 18, 56, 172, 532, 1640, 5064, 15624, 48224, 148816, 459280, 1417376, 4374240, 13499424, 41661056, 128571328, 396788032, 1224539264, 3779088000, 11662756992, 35992787456, 111078426880, 342802489600, 1057933111808, 3264919328256, 10075966124544
Offset: 1
-
a[n_] := (MatrixPower[{{1, 1, 1}, {3, 1, 0}, {2, 0, 0}}, n-1].{{1}, {1}, {1}})[[3, 1]]
-
Vec(-x*(2*x^2-1)/(2*x^3-4*x^2-2*x+1) + O(x^100)) \\ Colin Barker, May 21 2015
A334293
First quadrisection of Padovan sequence.
Original entry on oeis.org
1, 0, 2, 5, 16, 49, 151, 465, 1432, 4410, 13581, 41824, 128801, 396655, 1221537, 3761840, 11584946, 35676949, 109870576, 338356945, 1042002567, 3208946545, 9882257736, 30433357674, 93722435101, 288627200960, 888855064897, 2737314167775, 8429820731201, 25960439030624
Offset: 0
For n=3, a(3) = 2*a(2) + 3*a(1) + a(0) = 2*2 + 3*0 + 1 = 5.
A095797
Four-column array read by rows: T(n,k) for k=0..3 is the k-th component of the vector obtained by multiplying the n-th power of the 4 X 4 matrix (1,1,1,1; 7,3,1,0; 12,2,0,0; 6,0,0,0) and the vector (1,1,1,1).
Original entry on oeis.org
1, 1, 1, 1, 4, 11, 14, 6, 35, 75, 70, 24, 204, 540, 570, 210, 1524, 3618, 3528, 1224, 9894, 25050, 25524, 9144, 69612, 169932, 168828, 59364, 467736, 1165908, 1175208, 417672, 3226524, 7947084, 7944648, 2806416, 21924672, 54371568, 54612456, 19359144, 150267840, 371199864
Offset: 0
3rd set of 4 terms = (35, 75, 70, 24) since M^2 * [1 1 1 1] = [35 75 70 24].
Array begins:
1, 1, 1, 1;
4, 11, 14, 6;
35, 75, 70, 24;
204, 540, 570, 210;
1524, 3618, 3528,1224;
9894,25050,25524,9144;
- Index entries for linear recurrences with constant coefficients, signature (0,0,0,4,0,0,0,24,0,0,0,-30,0,0,0,-12).
-
M := Matrix(4,4,[1,1,1,1,7,3,1,0,12,2,0,0,6,0,0,0]) ;
v := Vector(4,[1,1,1,1]) ;
for i from 0 to 20 do
Mpr := (M ^ i).v ;
for j from 1 to 4 do
printf("%d,", Mpr[j]) ;
end do;
end do; # R. J. Mathar, Jun 20 2011
-
LinearRecurrence[{0,0,0,4,0,0,0,24,0,0,0,-30,0,0,0,-12},{1,1,1,1,4,11,14,6,35,75,70,24,204,540,570,210},50] (* Harvey P. Dale, Feb 08 2013 *)
-
Vec((1+x+x^2+x^3+7*x^5+10*x^6+2*x^7-5*x^8+7*x^9-10*x^10-2*x^12 +6*x^13-16*x^14-24*x^11) / (1-4*x^4-24*x^8+30*x^12+12*x^16)+O(x^99)) \\ Charles R Greathouse IV, Jun 21 2011
Showing 1-4 of 4 results.
Comments