cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A091143 Number of Pythagorean triples mod 2^n; i.e., number of solutions to x^2 + y^2 = z^2 mod 2^n.

Original entry on oeis.org

1, 4, 24, 96, 448, 1792, 7680, 30720, 126976, 507904, 2064384, 8257536, 33292288, 133169152, 534773760, 2139095040, 8573157376, 34292629504, 137304735744, 549218942976, 2197949513728, 8791798054912, 35175782154240, 140703128616960, 562881233944576
Offset: 0

Views

Author

T. D. Noe, Dec 22 2003

Keywords

Comments

This Mathematica program is much more efficient than the one given in A062775.

Crossrefs

Cf. A062775 (number of Pythagorean triples mod n).

Programs

  • Maple
    seq(op([(2^k-1)*2^(3*k-3),(2^k-1)*2^(3*k-1)]),k=1..30); # Robert Israel, Dec 03 2017
  • Mathematica
    Table[n = 2^k; b = Table[0, {n}]; Do[ b[[1 + Mod[i^2, n]]]++, {i, 0, n - 1}]; cnt = 0; Do[m = x^2 + y^2; cnt = cnt + b[[1 + Mod[m, n]]], {x, 0, n - 1}, {y, 0, n - 1}]; cnt, {k, 0, 13}]
  • PARI
    Vec(1/((4*x-1)*(8*x^2-1)) + O(x^100)) \\ Colin Barker, Oct 27 2013

Formula

a(2*k) = (2^(k+1)-1)*2^(3*k), a(2*k-1) = (2^k-1)*2^(3*k-1).
From Colin Barker, Oct 27 2013: (Start)
a(n) = 4*a(n-1) + 8*a(n-2) - 32*a(n-3).
G.f.: 1 / ((4*x-1)*(8*x^2-1)). (End)