A091206 Primes whose binary representation encodes a polynomial irreducible over GF(2).
2, 3, 7, 11, 13, 19, 31, 37, 41, 47, 59, 61, 67, 73, 97, 103, 109, 131, 137, 157, 167, 191, 193, 211, 229, 239, 241, 283, 313, 379, 397, 419, 433, 463, 487, 499, 557, 563, 587, 601, 607, 613, 617, 631, 647, 661, 677, 701, 719, 757, 761, 769, 787, 827, 859
Offset: 1
Keywords
Links
Crossrefs
Apart from a(2) = 3 a subsequence of A027697. The numbers in A027697 but not here are listed in A238186.
Cf. A091209 (Primes whose binary expansion encodes a polynomial reducible over GF(2)), A091212 (Composite, and reducible over GF(2)), A091214 (Composite, but irreducible over GF(2)), A257688 (either 1, prime or irreducible over GF(2)).
Subsequence: A255569.
Programs
-
Mathematica
okQ[p_] := Module[{id, pol, x}, id = IntegerDigits[p, 2] // Reverse; pol = id.x^Range[0, Length[id] - 1]; IrreduciblePolynomialQ[pol, Modulus -> 2]]; Select[Prime[Range[1000]], okQ] (* Jean-François Alcover, Feb 06 2023 *)
-
PARI
is(n)=polisirreducible( Mod(1,2) * Pol(digits(n,2)) ); forprime(n=2,10^3,if (is(n), print1(n,", "))); \\ Joerg Arndt, Nov 01 2013
Comments