A091209 Primes whose binary representation encodes a polynomial reducible over GF(2).
5, 17, 23, 29, 43, 53, 71, 79, 83, 89, 101, 107, 113, 127, 139, 149, 151, 163, 173, 179, 181, 197, 199, 223, 227, 233, 251, 257, 263, 269, 271, 277, 281, 293, 307, 311, 317, 331, 337, 347, 349, 353, 359, 367, 373, 383, 389, 401, 409, 421, 431, 439, 443, 449, 457, 461, 467, 479, 491, 503, 509, 521, 523
Offset: 1
Keywords
Links
Crossrefs
Programs
-
Maple
Primes:= select(isprime,[2,seq(2*i+1,i=1..1000)]): filter:= proc(n) local L,x; L:= convert(n,base,2); Irreduc(add(L[i]*x^(i-1),i=1..nops(L))) mod 2; end proc: remove(filter,Primes); # Robert Israel, May 17 2015
-
Mathematica
Select[Prime[Range[2, 100]], !IrreduciblePolynomialQ[bb = IntegerDigits[#, 2]; Sum[bb[[k]] x^(k-1), {k, 1, Length[bb]}], Modulus -> 2]&] (* Jean-François Alcover, Feb 28 2016 *)
-
PARI
forprime(p=2, 10^3, if( ! polisirreducible( Mod(1,2)*Pol(binary(p)) ), print1(p,", ") ) ); \\ Joerg Arndt, Feb 19 2014
Comments