cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A091209 Primes whose binary representation encodes a polynomial reducible over GF(2).

Original entry on oeis.org

5, 17, 23, 29, 43, 53, 71, 79, 83, 89, 101, 107, 113, 127, 139, 149, 151, 163, 173, 179, 181, 197, 199, 223, 227, 233, 251, 257, 263, 269, 271, 277, 281, 293, 307, 311, 317, 331, 337, 347, 349, 353, 359, 367, 373, 383, 389, 401, 409, 421, 431, 439, 443, 449, 457, 461, 467, 479, 491, 503, 509, 521, 523
Offset: 1

Views

Author

Antti Karttunen, Jan 03 2004

Keywords

Comments

"Encoded in binary representation" means that a polynomial a(n)*X^n+...+a(0)*X^0 over GF(2) is represented by the binary number a(n)*2^n+...+a(0)*2^0 in Z (where each coefficient a(k) = 0 or 1).
Except for 3, all primes with even Hamming weight (A027699) are terms, see A238186 for the subsequence of primes with odd Hamming weight. [Joerg Arndt and Antti Karttunen, Feb 19 2014]

Crossrefs

Intersection of A000040 and A091242.
Disjoint union of A238186 and (A027699 \ {3}).
Left inverse: A235043.
Cf. A091206 (Primes whose binary expansion encodes a polynomial irreducible over GF(2)), A091212 (Composite, and reducible over GF(2)), A091214 (Composite, but irreducible over GF(2)).

Programs

  • Maple
    Primes:= select(isprime,[2,seq(2*i+1,i=1..1000)]):
    filter:= proc(n) local L,x;
        L:= convert(n,base,2);
        Irreduc(add(L[i]*x^(i-1),i=1..nops(L))) mod 2;
    end proc:
    remove(filter,Primes); # Robert Israel, May 17 2015
  • Mathematica
    Select[Prime[Range[2, 100]], !IrreduciblePolynomialQ[bb = IntegerDigits[#, 2]; Sum[bb[[k]] x^(k-1), {k, 1, Length[bb]}], Modulus -> 2]&] (* Jean-François Alcover, Feb 28 2016 *)
  • PARI
    forprime(p=2, 10^3, if( ! polisirreducible( Mod(1,2)*Pol(binary(p)) ), print1(p,", ") ) ); \\ Joerg Arndt, Feb 19 2014

Formula

a(n) = A000040(A091210(n)) = A091242(A091211(n)).
Other identities. For all n >= 1:
A235043(a(n)) = n. [A235043 works as a left inverse of this sequence.]