A091242 Reducible polynomials over GF(2), coded in binary.
4, 5, 6, 8, 9, 10, 12, 14, 15, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 28, 29, 30, 32, 33, 34, 35, 36, 38, 39, 40, 42, 43, 44, 45, 46, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 60, 62, 63, 64, 65, 66, 68, 69, 70, 71, 72, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 88
Offset: 1
Keywords
Examples
For example, 5 = 101 in binary encodes the polynomial x^2+1 which is factored as (x+1)^2 in the polynomial ring GF(2)[X].
Links
Crossrefs
Programs
-
Maple
filter:= proc(n) local L; L:= convert(n,base,2); not Irreduc(add(L[i]*x^(i-1),i=1..nops(L))) mod 2 end proc: select(filter, [$2..200]); # Robert Israel, Aug 30 2018
-
Mathematica
okQ[n_] := Module[{x, id = IntegerDigits[n, 2] // Reverse}, !IrreduciblePolynomialQ[id.x^Range[0, Length[id]-1], Modulus -> 2]]; Select[Range[2, 200], okQ] (* Jean-François Alcover, Jan 04 2022 *)
Extensions
Edited by M. F. Hasler, Aug 18 2014
Comments