cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 32 results. Next

A280505 The palindromic kernel of n in base 2 (with carryless GF(2)[X] factorization): a(n) = A091255(n,A057889(n)).

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 1, 12, 1, 14, 15, 16, 17, 18, 1, 20, 21, 2, 3, 24, 1, 2, 27, 28, 3, 30, 31, 32, 33, 34, 7, 36, 1, 2, 5, 40, 1, 42, 3, 4, 45, 6, 1, 48, 7, 2, 51, 4, 3, 54, 1, 56, 5, 6, 1, 60, 1, 62, 63, 64, 65, 66, 1, 68, 1, 14, 3, 72, 73, 2, 15, 4, 3, 10, 7, 80, 1, 2, 9, 84, 85, 6, 1, 8, 3, 90, 1, 12, 93, 2, 5, 96, 1, 14, 99, 4, 9, 102, 1, 8, 15, 6
Offset: 1

Views

Author

Antti Karttunen, Jan 09 2017

Keywords

Comments

a(n) = the maximal GF(2)[X]-divisor of n which in base 2 is either a palindrome or becomes a palindrome if trailing 0's are omitted.
More precisely: a(n) = the unique term m of A057890 for which A280500(n,m) > 0 and A091222(m) >= A091222(k) for all such terms k of A057890 for which A280500(n,k) > 0.
All terms are in A057890 and each term of A057890 occurs an infinite number of times.

Crossrefs

Programs

Formula

a(n) = A091255(n,A057889(n)).
Other identities. For all n >= 1:
a(A057889(n)) = a(n).
A048720(a(n), A280506(n)) = n.

A325634 a(n) = A091255(n, sigma(n)).

Original entry on oeis.org

1, 1, 1, 1, 3, 6, 1, 1, 1, 6, 1, 4, 1, 2, 3, 1, 3, 3, 1, 2, 1, 2, 3, 12, 1, 2, 5, 28, 3, 6, 1, 1, 3, 10, 1, 1, 1, 2, 1, 10, 1, 2, 1, 4, 5, 6, 1, 4, 1, 1, 3, 2, 3, 10, 1, 8, 5, 6, 1, 4, 1, 2, 1, 1, 21, 6, 1, 6, 1, 14, 3, 9, 1, 2, 1, 4, 3, 2, 1, 2, 1, 2, 7, 28, 5, 6, 1, 4, 3, 2, 1, 4, 1, 2, 5, 12, 1, 1, 5, 1, 3, 10, 1, 2, 3
Offset: 1

Views

Author

Antti Karttunen, May 21 2019

Keywords

Crossrefs

Cf. A000203, A009194, A091255, A169813, A325632, A325633, A325635, A325639 (fixed points, n such that a(n) = n).

Programs

  • PARI
    A091255sq(a,b) = fromdigits(Vec(lift(gcd(Pol(binary(a))*Mod(1, 2),Pol(binary(b))*Mod(1, 2)))),2);
    A325634(n) = A091255sq(n, sigma(n));

Formula

a(n) = A091255(n, A000203(n)).
a(n) = A091255(n, A169813(n)) = A091255(A000203(n), A169813(n)).

A325635 a(n) = A091255(2n, sigma(n)).

Original entry on oeis.org

1, 1, 2, 1, 6, 12, 2, 1, 1, 6, 2, 4, 2, 4, 6, 1, 6, 3, 2, 2, 2, 4, 6, 12, 1, 2, 10, 56, 6, 12, 2, 1, 6, 10, 2, 1, 2, 4, 2, 10, 2, 4, 2, 4, 10, 12, 2, 4, 1, 1, 6, 2, 6, 20, 2, 8, 10, 6, 2, 8, 2, 4, 2, 1, 42, 12, 2, 6, 2, 28, 6, 9, 2, 2, 2, 4, 6, 4, 2, 2, 1, 2, 14, 56, 10, 12, 2, 4, 6, 2, 2, 8, 2, 4, 10, 12, 2, 1, 10, 1, 6, 20, 2, 2, 6
Offset: 1

Views

Author

Antti Karttunen, May 21 2019

Keywords

Crossrefs

Cf. A000203, A091255, A318467, A325634, A325636, A325638 (n such that a(n) = 2n).

Programs

  • PARI
    A091255sq(a,b) = fromdigits(Vec(lift(gcd(Pol(binary(a))*Mod(1, 2),Pol(binary(b))*Mod(1, 2)))),2);
    A325635(n) = A091255sq(n+n, sigma(n));

Formula

a(n) = A091255(2n, A000203(n)).
a(n) = A091255(2n, A318467(n)) = A091255(A000203(n), A318467(n)).

A280501 "Blue kernel" of n: a(n) = A091255(n, A193231(n)).

Original entry on oeis.org

1, 1, 1, 1, 1, 6, 7, 1, 7, 6, 1, 6, 1, 7, 1, 1, 1, 18, 19, 20, 21, 1, 1, 6, 1, 1, 7, 7, 1, 6, 1, 1, 1, 6, 7, 18, 1, 19, 1, 20, 1, 21, 1, 1, 7, 6, 1, 6, 7, 1, 1, 1, 19, 18, 1, 7, 1, 6, 1, 20, 1, 1, 21, 1, 21, 6, 1, 20, 1, 7, 1, 18, 1, 1, 1, 19, 1, 6, 7, 20, 1, 1, 7, 21, 1, 6, 1, 1, 1, 18, 1, 6, 7, 1, 19, 6, 1, 7, 1, 1, 7, 6, 1, 1, 1, 106, 107, 108, 109, 1, 1, 7
Offset: 1

Views

Author

Antti Karttunen, Jan 09 2017

Keywords

Crossrefs

Programs

Formula

a(n) = A091255(n, A193231(n)).
Other identities. For all n >= 1:
a(A193231(n)) = a(n).
A048720(a(n), A280502(n)) = n.

A325639 Numbers n for which A091255(n, sigma(n)) = n.

Original entry on oeis.org

1, 6, 28, 120, 312, 428, 456, 496, 504, 672, 760, 6552, 8128, 30240, 31452, 32760, 429240, 523776, 2178540, 5009850, 7505976, 23569920, 33550336, 45532800, 142990848, 186076800, 379975680
Offset: 1

Views

Author

Antti Karttunen, May 21 2019

Keywords

Comments

Numbers n for which A000203(n) = A048720(n, k) for some k. The value of k for the initial terms is: 1, 2, 2, 7, 3, 3, 6, 2, 5, 3, 3, 6, 2, 4, 6, 4, 6, 7, 4, 3, 6, 4, 2, 4, 4, 7, 7, ...
Conjecture: all terms after the initial one are even. If this is true, then there are no odd perfect numbers.
A007691(11) = 2178540 is the first term of A007691 which is not present in this sequence.

Crossrefs

Fixed points of A325632 and A325634.
Cf. A000396, A325638 (subsequences).

Programs

A325632 a(n) = gcd(n, A325634(n)) = gcd(n, A091255(n, sigma(n))).

Original entry on oeis.org

1, 1, 1, 1, 1, 6, 1, 1, 1, 2, 1, 4, 1, 2, 3, 1, 1, 3, 1, 2, 1, 2, 1, 12, 1, 2, 1, 28, 1, 6, 1, 1, 3, 2, 1, 1, 1, 2, 1, 10, 1, 2, 1, 4, 5, 2, 1, 4, 1, 1, 3, 2, 1, 2, 1, 8, 1, 2, 1, 4, 1, 2, 1, 1, 1, 6, 1, 2, 1, 14, 1, 9, 1, 2, 1, 4, 1, 2, 1, 2, 1, 2, 1, 28, 5, 2, 1, 4, 1, 2, 1, 4, 1, 2, 5, 12, 1, 1, 1, 1, 1, 2, 1, 2, 3
Offset: 1

Views

Author

Antti Karttunen, May 21 2019

Keywords

Crossrefs

Cf. A000203, A091255, A325634, A325639 (fixed points).
Differs from A009194 for the first time at n=42, where a(42) = 2, while A009194(42) = 6.
Differs from A325633 and A325640 for the first time at n=45, where a(45) = 5, while A325633(45) = 1 and A325640(45) = 3.

Programs

Formula

a(n) = gcd(n, A325634(n)) = gcd(n, A091255(n, A000203(n))).

A280503 a(n) = A091255(n,A056539(n)).

Original entry on oeis.org

1, 2, 3, 2, 5, 2, 7, 2, 9, 10, 1, 12, 1, 2, 15, 2, 17, 2, 1, 2, 21, 2, 3, 4, 1, 2, 27, 4, 3, 2, 31, 2, 33, 6, 7, 18, 1, 38, 5, 6, 1, 42, 3, 2, 45, 6, 1, 12, 7, 2, 51, 52, 3, 18, 1, 56, 5, 6, 1, 12, 1, 2, 63, 2, 65, 2, 1, 2, 1, 2, 3, 2, 73, 2, 15, 2, 3, 2, 7, 2, 1, 2, 9, 2, 85, 2, 1, 2, 3, 2, 1, 2, 93, 2, 5, 4, 1, 2, 99, 4, 9, 2, 1, 4, 15, 2, 107, 4, 1, 2, 3, 8
Offset: 1

Views

Author

Antti Karttunen, Jan 09 2017

Keywords

Crossrefs

Programs

Formula

a(n) = A091255(n,A056539(n)).
Other identities. For all n >= 1:
a(A056539(n)) = a(n).
A048720(a(n), A280504(n)) = n.

A325633 a(n) = gcd(A009194(n), A325634(n)) = gcd(A009194(n), A091255(n, sigma(n))).

Original entry on oeis.org

1, 1, 1, 1, 1, 6, 1, 1, 1, 2, 1, 4, 1, 2, 3, 1, 1, 3, 1, 2, 1, 2, 1, 12, 1, 2, 1, 28, 1, 6, 1, 1, 3, 2, 1, 1, 1, 2, 1, 10, 1, 2, 1, 4, 1, 2, 1, 4, 1, 1, 3, 2, 1, 2, 1, 8, 1, 2, 1, 4, 1, 2, 1, 1, 1, 6, 1, 2, 1, 2, 1, 3, 1, 2, 1, 4, 1, 2, 1, 2, 1, 2, 1, 28, 1, 2, 1, 4, 1, 2, 1, 4, 1, 2, 5, 12, 1, 1, 1, 1, 1, 2, 1, 2, 3
Offset: 1

Views

Author

Antti Karttunen, May 21 2019

Keywords

Crossrefs

Differs from A009194 for the first time at n=42, where a(42) = 2, while A009194(42) = 6.
Differs from A325632 and A325640 for the first time at n=45, where a(45) = 1, while A325632(45) = 5 and A325640(45) = 3.

Programs

Formula

a(n) = gcd(A009194(n), A325634(n)) = gcd(A009194(n), A091255(n, A000203(n))).

A369293 Lexicographically earliest sequence of distinct positive integers such that a(1) = 1, a(2) = 2, and for any n > 1, A091255(a(n), a(n+1)) <> 1.

Original entry on oeis.org

1, 2, 4, 6, 3, 5, 9, 7, 14, 8, 10, 12, 15, 17, 18, 16, 20, 22, 11, 29, 23, 13, 26, 24, 27, 21, 28, 30, 32, 34, 33, 31, 62, 36, 35, 42, 38, 19, 53, 39, 40, 43, 25, 50, 44, 46, 45, 48, 51, 54, 49, 56, 52, 57, 58, 60, 63, 65, 66, 64, 68, 70, 72, 71, 61, 122, 74
Offset: 1

Views

Author

Rémy Sigrist, Jan 18 2024

Keywords

Comments

In other words, the polynomials over GF(2) whose coefficients are encoded in the binary expansions of two consecutive terms (beyond the initial term) are not coprime.
This sequence is a variant of the EKG sequence (A064413).
Is this a permutation of the positive integers?

Examples

			The first terms, alongside A091255(a(n), a(n+1)), are:
  n   a(n)  A091255(a(n), a(n+1))
  --  ----  ---------------------
   1     1                      1
   2     2                      2
   3     4                      2
   4     6                      3
   5     3                      3
   6     5                      3
   7     9                      7
   8     7                      7
   9    14                      2
  10     8                      2
		

Crossrefs

See A369281 and A369294 for similar sequences.

Programs

  • PARI
    See Links section.

A325640 a(n) = A091255(n, A009194(n)) = A091255(n, gcd(n, sigma(n))).

Original entry on oeis.org

1, 1, 1, 1, 1, 6, 1, 1, 1, 2, 1, 4, 1, 2, 3, 1, 1, 3, 1, 2, 1, 2, 1, 12, 1, 2, 1, 28, 1, 6, 1, 1, 3, 2, 1, 1, 1, 2, 1, 10, 1, 2, 1, 4, 3, 2, 1, 4, 1, 1, 3, 2, 1, 6, 1, 8, 1, 2, 1, 12, 1, 2, 1, 1, 1, 6, 1, 2, 1, 2, 1, 3, 1, 2, 1, 4, 1, 6, 1, 2, 1, 2, 1, 28, 1, 2, 1, 4, 1, 18, 1, 4, 1, 2, 5, 12, 1, 1, 3, 1, 1, 6, 1, 2, 3
Offset: 1

Views

Author

Antti Karttunen, May 21 2019

Keywords

Crossrefs

Cf. A000203, A007691 (fixed points), A009194, A091255, A325634.
Differs from A325632 and A325633 for the first time at n=45, where a(45) = 3, while A325632(45) = 5 and A325633(45) = 1.

Programs

Formula

a(n) = A091255(n, A009194(n)) = A091255(n, gcd(n, sigma(n))).
Showing 1-10 of 32 results. Next