A091264 Matrix defined by a(n,k) = 2^n + (k-1), read by antidiagonals.
0, 1, 1, 3, 2, 2, 7, 4, 3, 3, 15, 8, 5, 4, 4, 31, 16, 9, 6, 5, 5, 63, 32, 17, 10, 7, 6, 6, 127, 64, 33, 18, 11, 8, 7, 7, 255, 128, 65, 34, 19, 12, 9, 8, 8, 511, 256, 129, 66, 35, 20, 13, 10, 9, 9, 1023, 512, 257, 130, 67, 36, 21, 14, 11, 10, 10, 2047, 1024, 513, 258, 131, 68, 37, 22
Offset: 0
Examples
{0}; {1,1}; {3,2,2}; {7,4,3,3}; {15,8,5,4,4}; {31,16,9,6,5,5}; {63,32,17,10,7,6,6}; a(5,3) = 34 because 2^5 + (3-1) = 34.
Crossrefs
Rows: a(0, k) = A001477(k), a(1, k) = A000027(k+1) etc. etc. Columns: a(n, 0) = A000225(n). a(n, 1) = A000079(n). a(n, 2) = A000051(n). a(n, 3) = A052548(n). a(n, 4) = A062709(n). Diagonals: a(n, n+3) = A052968(n+1). a(n, n+2) = A005126(n). a(n, n+1) = A006127(n). a(n, n) = A052944(n). a(n, n-1) = A083706(n-1). Also note that the sums of the antidiagonals = the partial sums of the main diagonal, i.e., a(n, n).
Programs
-
Mathematica
Flatten[ Table[ Table[ a[i, n - i], {i, n, 0, -1}], {n, 0, 11}]] (* both from Robert G. Wilson v, Feb 26 2004 *) Table[a[n, k], {n, 0, 10}, {k, 0, 10}] // TableForm (* to view the table *)
Formula
For k > 0, a(n, k)= a(n, k-1) + 1.
a(n, k) = 2^n + (k-1).
Extensions
More terms from Robert G. Wilson v, Feb 23 2004