A091286 Numbers n such that sigma_3(n) is divisible by square of cototient of n, while n is not a prime number.
15, 85, 259, 295, 391, 589, 799, 1111, 1717, 3193, 4171, 4369, 12361, 17473, 23533, 25429, 28243, 31351, 34477, 36181, 41407, 47989, 51143, 52537, 58103, 65641, 68377, 69541, 69919, 70453, 72619, 81121, 83131, 83767, 85069, 91759
Offset: 1
Keywords
Examples
n=15: cototient(15) = 7, sigma_3(15) = 3528 = 72 * 49.
Links
- Amiram Eldar, Table of n, a(n) for n = 1..1000
Programs
-
Mathematica
Do[s=DivisorSigma[3, n]/(n-EulerPhi[n])^2; If[IntegerQ[s]&&!PrimeQ[n], Print[n]], {n, 1, 100000}]
-
PARI
isok(n) = (n!=1) && !isprime(n) && !(sigma(n, 3)%(n-eulerphi(n))^2); \\ Michel Marcus, Aug 13 2019