A091297 A fixed point of the morphism 0 -> 02, 1 -> 02, 2 -> 11, starting from 0.
0, 2, 1, 1, 0, 2, 0, 2, 0, 2, 1, 1, 0, 2, 1, 1, 0, 2, 1, 1, 0, 2, 0, 2, 0, 2, 1, 1, 0, 2, 0, 2, 0, 2, 1, 1, 0, 2, 0, 2, 0, 2, 1, 1, 0, 2, 1, 1, 0, 2, 1, 1, 0, 2, 0, 2, 0, 2, 1, 1, 0, 2, 1, 1, 0, 2, 1, 1, 0, 2, 0, 2, 0, 2, 1, 1, 0, 2, 1, 1, 0, 2, 1, 1, 0, 2, 0, 2, 0, 2, 1, 1, 0, 2, 0, 2, 0, 2, 1, 1, 0, 2, 0, 2, 0
Offset: 1
Links
Programs
-
Mathematica
Nest[ Function[ l, {Flatten[(l /. {0 -> {0, 2}, 1 -> {0, 2}, 2 -> {1, 1}}) ]}], {0}, 7] (* Robert G. Wilson v, Mar 03 2005 *)
-
PARI
a(n)={while(1, my(m=logint(n,2)); if(n==2*2^m-1, return(m%2)); if(n==2^m, return(1 + m%2)); n-=2^m)} \\ Andrew Howroyd, Oct 17 2020
-
PARI
a(n) = n++; my(k=valuation(n>>1,2)); if(k%2==1, 1, 2*(n%2)); \\ Kevin Ryde, Oct 17 2020
Formula
a(n) = 0 iff n = A079523(k), a(n) = 1 iff n = A081706(2*k) or n = 1 + A081706(2*k), a(n) = 2 iff n = A036554(k).
a(2*n-1) + a(2*n) = 2.
From Mikhail Kurkov, Oct 10 2020: (Start)
a(2^m-1) = 1 - m mod 2, m > 0,
a(2^m) = 1 + m mod 2, m > 0,
a(2^m+k) = a(k) for 0 < k < 2^m-1, m > 1.
a(2^m-k) = 2 - a(k-1) for 1 < k <= 2^(m-1), m > 1. (End)
a(2n+1) = mex{a(n)}, a(2n) = mex{a(n),a(2n+1)} or a(2n+1) = [a(n)=0], a(2n) = 2 - [a(n)=2] for n > 0 with a(1) = 0. - Mikhail Kurkov, Mar 25 2021
Extensions
More terms from Robert G. Wilson v, Mar 03 2005
Comments