A091315 Number of orbits of length n under the map whose periodic points are counted by A061684.
1, 2, 21, 402, 13805, 761154, 62523664, 7237970648, 1132600004910, 231900134422880, 60528794385067778, 19713593779259862624, 7869483395065035685162, 3792402572391137423764584
Offset: 1
Keywords
Examples
The sequence A061684 begins 1,1,5,64,1613, so a(3)=(b(3)-b(1))/3=21.
Links
- Y. Puri and T. Ward, Arithmetic and growth of periodic orbits, J. Integer Seqs., Vol. 4 (2001), #01.2.1.
- J.-M. Sixdeniers, K. A. Penson and A. I. Solomon, Extended Bell and Stirling Numbers From Hypergeometric Exponentiation, J. Integer Seqs. Vol. 4 (2001), #01.1.4.
- Thomas Ward, Exactly realizable sequences. [local copy].
Crossrefs
Cf. A061684.
Formula
If b(n) is the (n+1)th term in A061684, then a(n) = (1/n)*Sum_{d|n}mu(d)b(n/d).
Extensions
Name clarified by Michel Marcus, May 14 2015
Comments