A091320 Triangle read by rows: T(n,k) is the number of noncrossing trees with n edges and k leaves.
1, 2, 1, 4, 7, 1, 8, 30, 16, 1, 16, 104, 122, 30, 1, 32, 320, 660, 365, 50, 1, 64, 912, 2920, 2875, 903, 77, 1, 128, 2464, 11312, 17430, 9856, 1960, 112, 1, 256, 6400, 39872, 88592, 78974, 28560, 3864, 156, 1, 512, 16128, 130944, 396480, 512316, 294042, 73008, 7074, 210, 1
Offset: 1
Examples
Triangle starts: 1; 2, 1; 4, 7, 1; 8, 30, 16, 1; 16, 104, 122, 30, 1; 32, 320, 660, 365, 50, 1; ...
Links
- Andrew Howroyd, Table of n, a(n) for n = 1..1275
- Paul Barry, Notes on Riordan arrays and lattice paths, arXiv:2504.09719 [math.CO], 2025. See pp. 28-29.
- Alexander Burstein and Megan Martinez, Pattern classes equinumerous to the class of ternary forests, Permutation Patterns Virtual Workshop, Howard University (2020).
- Philippe Flajolet and Marc Noy, Analytic combinatorics of non-crossing configurations, Discrete Math., 204, 203-229, 1999.
- Marc Noy, Enumeration of noncrossing trees on a circle, Discrete Math., 180, 301-313, 1998.
- Donovan Young, Polyomino matchings in generalised games of memory and linear k-chord diagrams, arXiv:2004.06921 [math.CO], 2020. See also J. Int. Seq., Vol. 23 (2020), Article 20.9.1.
Programs
-
Maple
T := proc(n,k) if k=n then 1 else (1/n)*binomial(n,k)*sum(2^(n+1-2*k+j)*binomial(n,j)*binomial(n-k,k-1-j),j=0..n) fi end: seq(seq(T(n,k),k=1..n),n=1..12);
-
Mathematica
T[n_, k_] := 1/n Binomial[n, k] Sum[2^(n+1-2k+j) Binomial[n, j] Binomial[n-k, k-1-j], {j, 0, n}]; Table[T[n, k], {n, 1, 12}, {k, 1, n}] // Flatten (* Jean-François Alcover, Jul 29 2018 *)
-
PARI
T(n,k) = binomial(n, k)*sum(j=0, n, 2^(n+1-2*k+j)*binomial(n, j)*binomial(n-k, k-1-j))/n; \\ Andrew Howroyd, Nov 06 2017
Formula
T(n, k) = (1/n)*binomial(n, k)*Sum_{j=0..n} 2^(n+1-2*k+j)*binomial(n, j)*binomial(n-k, k-1-j).
G.f.: G(t, z) satisfies z*G^3 - (1 + z - t*z)*G + 1 = 0.
Comments